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EXECUTIVE SUMMARY 

Many sites of groundwater contamination rely heavily on complex numerical models of 
flow and transport to develop dosure plans. This has created a need for tools and approaches that 
can be used to build confidence in model predictions and make it apparent to regulators, policy 
makers, and the public that these models are sumcient for decision making. This confidence 
building is a long-term iterative process and it is this process that should be termed "model 
validation." Model validation is a process not an end result. That is, the process of model 
validation cannot always asme acceptable prediction or quality of the model. Rather, it provides 
safeguard against faulty models or inadequately developed and tested models. Therefore, 
development of a systematic approach for evaluating and validating s u b s h e  predictive 
models and guiding field activities for data collection and long-term monitoring is strongly 
needed. This report presents a redew of model validation studies that p d n  to groundwater 
flow and transport modeling. Definitions, literature debates, previously proposed validation 
strategies, and conferences and symposia that focused on subsurfme model validation are 
reviewed and discussed. The review is general In nature, but the fwus of the discussion is on 
site-specific, predictive groundwater models that are used for making decisions regarding 
remediation activities and site closure. An attempt is made to compile most of the published 
studies on groundwater model validation and assemble what has been proposed or used for 
validating subsurface models. The aim is to provide a reasonable stmting point to aid the 
development of the validation plan for the p u n d w a k r  flow and transport model of the Faultless 
nuclear test conducted at the Central Nevada Test Area (CNTA). 

The review of previous studies on model validation shows that there does not exist a set 
of specific procedures and tests that can be easily adaptad and applied to determine the validity 
of site-specific groundwater models. This is true for both deterministic and stochastic models, 
with the latter posing a more difficult and challenging problem when it comes to validation. This 
repori then proposes a general validation approach for the CNTA model, which addresses some 
of the important issues recognized in previous validation studies, conferences, and symposia as 
crucial to the process. The proposed approach l i i  model building, mode1 calibration, model 
predictions, data collection, model evaluations, and model validation in an iterstive Imp. The 
approach focuses on use of collected validation data to reduce model uncertainty and narrow the 
range of pssible outcomes of stochastic numerical modejs. It accounts for the stochastic nature 
of the numerical CNTA mdel ,  which used Monte Carlo simulation approach. The proposed 
methodology relies on the premise that absolute validity is not even a theoretical possibility and 
is not a regulatory requirement. Rather, it highlights the importance of testing as many aspects of 
the model as possible and using as many diverse statistical tools as possible for rigorous 
checking and confidence building in the model and its predictions. It is this confidence that will 
eventually allow for regulator and public acceptance of decisions based on the model predictions. 
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1. INTRODUCTION 

Many of the most difficult environmental problems facing scientists pertain to 
groundwater contamination. Contaminants range from solvents and heavy metals to 
radionuclides, and they come fiom a wide variety of sources ranging from leaking tanks to 
underground nuclear tests. All of these problems have in common the need to demonstrate 
understanding of past, present, and future migration behavior in subsurface systems where there 
are limited opportunities to make observations. As a result, resolution of groundwater 
contamination problems relies extensively on numerical models of flow and transport. Great 
advances in both theoretical and applied areas of numerical modeling have been made in recent 
years, dnven in 1;xge part by advances in computer resources. This has enabled sophisticated 
incorporation of the uncertainty infierent in all analyses of the subsurface through use of 
stochastic techniques (e.g., Dagan, 1989; Gelhar, 1993; Cushman, 1997). 

During the past two decades, hydrogeologic studies have commonly used stochastic tools 
to incorporate the effects of spatial variability of hydrologic properties and parametric 
uncertainty into the predictive capabilities of numerical groundwater flow and contaminant 
transporl models. These studies have made it clear that inadequate and insufficient data limit the 
ability of these models to predict system behavior without substantial uncertainty (e.g., Pohll et 
a!., 1999; Pohlmann el al., 2000; Hassan ei a/., 2001). Uncertainty is always inherent in the 
model prediction and is the resukt of the inability to fully characterize the subsurface 
environment and the processes controlling the system behavior. Full characterization is limited 
by access to the subsurface, which requires extensive borehole drilling that can adversely affect 
the integrity of the geologic structure of the site or be prohibitively expensive. The stochastic 
tools used to overcome or address the issues of uncertainty provide predictions as ranges of 
output with associated probabilities or confidence levels. 

The significant advances in computational resources made in the past decade have 
elevated the level of complexity of numerical and analytical stmhastic models to such a high 
level that a gap has been created between model results and confident assessment of the accuracy 
(or at least relevance) of model simulations by regulators and the public. The acceptance of the 
model results by the regulators and the public is an essential prerequisite to close subsurface 
contaminated sites. This acceptance is difficult to attain with the large range of unceltainty 
associated with the predictions of these stochastic models. Inclusion of a model validation phase 
is probably the best way to address this problem and it can achieve buy-in for a closure process 
involving numerical groundwater modeling. Model validation is the process of evaluating and 
testing the different aspects of the model for the purpose of refining, enhancing, and building 
confidence in the model predictions in such a way that allows for sound decision-making. It is 
the process that follows the determination that the model is well developed and calibrated, after 
sensitivity analysis indicates insignificant uncertainty reduction from additional characterization 
efforts. At this stage, and to altllow for making decisions based on the model results, the model 
validation process should start. Model validation is thus a process, not an end result by itself. It 
cannot ensure an acceptable model. Rather, it provides a safeguard against faulty models or 
inadequately developed and tested models. If the validation process indicates that major 
deficiencies exist in the model and a new round of characterization, conceptualization, 
calibration, modeling, and prediction is needed, it does not mean that the validation process 
failed. On the contrary, this means that the "pmcess" is successful in achieving its objectives. If 
the refined model results are proven (through the validation process) to be not in any major 



contradiction with field data and these results end up being used as the basis for decision- 
making, then the validation process indicates that the model is valid for making decisions (not 
necessarily a true or exact representation of reality). 

Regulators and decision makers should understand that there is no way to guarantee that a 
model-based decision is always correct, or that a model can ever be proven to be valid in the 
sfriclest sense of the term (van der Heijde, 1990). Many assert that it is impossible to validate a 
groundwater numerical model because such a claim would assert a demonstration of truth that 
can never be attained for our approximate solutions to subsurface problems (Oreskes ef a!., 
1994). These views consider the validation from the strictest definition of the word, as will be 
discussed later. Again, the model validation 'process" should not be viewed as a mechanism for 
proving that the model is valid, but rather as a mechanism for enhancing the model, reducing its 
uncertainty, and improving its predictions through an iterative, long-term, confidence-building 
process. The process should also contain trigger mechanisms that will drive the model back to 
the characterization-conceptualization-calibration-prediction loop {i.e., back to square one), but 
with a better understanding of the modeled system. 

Implementing a validation process can help move the modeling pmjecl forward beyond 
the endless loop of characterization, conceptualization, calibration, and prediction, yet will also 
provide a way back to this loop. However, different parties understand validation in different 
ways, and there is an urgent need to unify the concepts of model validation and develop a 
systematic way of testing and evaluating model predictions. This may facilitate acquiring the 
acceptance of the regulators and the public of the model-based decisions, especially with many 
sites (e.g., U.S. Department of Energy [DOE] and U.S. Department of Defense [DoD] sites) now 
having closure processes "knocking on the door" of validation. The development and use of 
rigorous science to define a process that site sponsors, regulators, and the public can accept will 
benefit all involved parties. 

An actual case that is currently facing the issue of model validation is the Central Nevada 
Test Area (CNTA), where the Faultless underground nuclear test is undergoing environmental 
restoration. Underground nuclear test sites are extreme examples of the need for groundwater 
modeling and for model validation, as a significant radionuclide source will be left in contact 
with groundwater due to the absence of technically feasible remediation technology. Instead, 
regulatory closure will depend on a model-generated contaminant boundary (boundary of the 
area having contaminant concentration exceeding certain threshold) for exercising stewardship 
restrictions. Confidence in the model results is absolutely critical to achieve closure. A complex, 
three-dimensional stochastic flow and kmsport model was developed for the CNTA site 
( P o k a n n  et a l ,  1999, 2000) and carefully reviewed by the state regulator. Though several 
aspects of uncertainty were included in that model, concerns remained regarding uncertainty in 
individual parameter values and the additive effects of multiple sources of unceltainty. A Data 
Decision Analysis (DDA) was performed (Pohll and Mihevc 2000) to quantify uncertainty in the 
existing model and determine the most cost-beneficial activities for reducing uncertainty, if 
reduction was needed. The DDA indicated that though there was large uncertainty present in 
some model parameters, the overall uncertainty in the calculated contaminant boundary (areas 
having contamination exceeding a certain stmdard) during the 1,000-year regulatory timeframe 
was relatively small. As a result, only limited uncertainty reduction could be expected h m  
expensive characterization activities. With these results, the model sponsor (DOE) and the 
regulator (Nevada Division of Environmental Protection) determined that the site model was 



suitable for moving fonuard in the corrective action process. Key to this acceptance was the 
acknowledgment that the model requires independent validation data and that the site requires 
long-term monitoring (Chapman er al., 2002). Thus, the CNTA model is in immediate need of a 
validation approach that can stand up to the rigors of scientific peer review, regulatory oversight, 
and citizen concerns. 

Other sites share the need for an effective validation strategy (e.g., the Shoal underground 
test area, Nevada, Hanford Site, Washington; Maxey Flats, Kentucky; Femald, Ohio; Oak Ridge 
National Laboratory, Tennessee; Weldon Springs, Missouri; Nevada Test Site), so that model 
validation is one of the most critical and challenging issues facing modelers, scientists and 
regulatory and government agencies. Unfortunately, there does not exist a set of specific 
procedures and tests that can be easily adapted and applied to determine the validity of a 
deterministic model, particularly a site-specific model. The validation issue i s  even more 
challenging for the "predictive" stochastic models that incorporate effecis of parameter 
uncertainty and spatial variability. As pointed out by Konikow (1986), if a model is to be used 
for prediction, it should be periodically postaudited, or recalibrated, to incorporate new data and 
information that may provide different understanding of the processes studied at a certain site. 
The step of moving forward in the face of uncertainty and proceeding to the validation and long- 
term monitoring of the Central Nevads Test Area (CNTA) model is consistent with this 
paradigm since the validation phase and monitoring phase wili serve as the periodic postaudit of 
the CCNTA model. 

The purpose of this validation ptan is to outline a strategy for the different activities that 
are needed for testing the predictions of the CNTA model. 'Ihese activities include the fietd 
activities for collecting the testing data, the scientific approach that will be used to test the model 
predictions using these data, the iterative scheme of r e fdng  the model and collecting data, and 
the long-term vision for monitoring the site. Through the validation stage, the focus will be on 
three major issues: 1) to test how the predictions of the numerical groundwater flow and 
transport model at CNTA and the underlying conceptual model and assumptions are robust (see 
definition later) and consistent with the regulatory purposes; 2) to reevaluate and refine mode1 
predictions and reduce the uncertainty level based on data collected in the proposed field 
activities for this validation; and 3) start the long-term monitoring phase of the site that benefits 
from and builds on the validation-phase field activities. 

In this repor&, we propose a validation approach for the CNTA model, which addresses 
some of the important issues that were recognized in previous validation studies, conferences, 
and symposia as crucial to the process. The proposed approach is an integrated approach that 
uses a number of tools and approaches for evaluating the predictive CNTA model, refining its 
predictions, reducing the associated uncertainty, and building the confidence necessary for site 
closure. The proposed validation methodology focuses on use of collected validation data to 
reduce model uncertainty and narrow the range of possible outcomes of stochastic numerical 
models. This requires iterative implementation of data collection, model evaluation, model 
refinement, and uncertainty reduction. This is particularly critical in radionuclide transport 
models such as the CNTA model since only a few aspects of the transport modeling results can 
be tested. This is because the predictions of the model extend thousands of years into the future 
and no data can be used at this time scale. The key strategy will be to focus on evaluating other 
model elements (e.g., geologic modei, model structure, and flow model) using validation data, 
which will help refine transport predictions and reduce their uncertainty. 



It is important to recognize that the validation issues reviewed in this article are different 
from many popular model studies that relied on particular field experiments and employed the 
term "model validation," which referred to validating "process" models or mathematical models.. 
These experiments, primarily designed for studying and modeling subsurface phenomena, 
include the Cape Cod experiment (e.g., LeBlanc et al., 1991; Hess et al., 1992), the Borden site 
test (e.g., Mackay et al., 1986; Freyberg, 1986), the Macrodispersion Experiment (MADE) site 
(e.g., Boggs et aL, 1992), the Twin Lake natural gradient tracer experiment (e.g., Moltyaner ef 
al., 1993), and the Grimsel tracer migration experiments (Frick, 1994). These experiments 
provided well-characterized sites and reasonably large data sets for calibrating and validating 
certain process and mathematical models. The common theme was to develop different process 
models for understanding the physics of flow and transport in the subsurface and use these 
characterized sites for validating the model conceptualizations and mathematical formulation. 
Another set of studies focused on cafibrating and validating different mathematical models using 
tracer test results in fractured aquifers (e.g., Maloszewski and Zuber. 1992, 1993; Cacas et a!., 
1990a, ti; Raven et a/. ,  1988; Shapim and Nicholas, 1989). The scope of these validation studies 
was lo determine whether the values of the model-fitted parameters agreed with those known 
from independent determinations. The term ''model validation" was frequently used in these and 
other studies and it essentially meant validating a certain mathematical model or verifying the 
existence of certain processes (e.g., matrix diffusion) using well-characterized field experiments. 
In addition, the field experiments in these studies were available a priori; and models were 
developed, calibrated, and validated afterwards. For the "predictive" model validation issue we 
seek to address, validation data must be independent of the c.haracterization and calibration data 
used to construct the model. 

As the two words forming "model validation" have been used with too many different 
meanings, and since some other terms are interchangeably used for the term "validation," it is 
necessary to define different t m s  and to illustrate the intended meaning of these terms when 
used in this report. The remainder of this report is therefore organized as follows. We present in 
Section 2 a discussion of the reasons that necessitate the need for validation and the challenges 
associated with validating a site-specific model such as the CNTA model. In Section 3, we then 
review the different aspects and definitions of terms such as model, calibration, verification and 
validation. The purpose of this section is to present clear definitions of and differentiations 
between the different terminologies as adapted in this report. Model calibration, verification, and 
validation are thoroughly discussed in this section with a detailed presentation of the 
discrepancies and the debate in the literature a b u t  the meaning and purposes of model 
validation. Section 4 presents a literature review of the studies and international projects that 
dealt with model validation issues. This section also discusses the different strategies that were 
proposed for validating subsurface models (mainly, models of performance assessment of high- 
level nuclear waste repositories). Section 5 discusses the critical issues and considerations that 
should be accounted for in developing a model validation plan. Finally, Section 6 outlines a 
proposed validation plan for the CNTA model with detailed descriptions of some of the 
underlying theories and hypotheses presented in the Appendices. 

2. NEED FOR AND CHALLENGES FACING MODEL VALIDATION 
2.1 Need for Validation 

Predicting groundwater flow and transport at the field scale is usually done for a specific 
purpose. A regulatory question arises at a site, for example, and modeling is undertaken to 



answer that question. The need for validation arises when the regulatory agency and 
subsequently the public require assurance that the model's answer to the posed question is a 
close representation of reality (or at least a conservative estimate). Developers and users of 
models (i.e., the decision-makers using information derived h m  model results) and people 
affected by decisions based on such models are all rightly concerned with whether the model and 
its results are "correct" (Sasent, 1990). However, depending on the model and the application in 
question, the correctness requirement may become one of reasonableness. For groundwater 
models, for instance, all involved parties should be able to understand that the correctness 
requirement cannot be achieved. Instead, the requirement should shift to good modeling protocol 
followed by long-term vatidation and monitoring processes to make sure that the predicted 
consequences are not underestimated. 

As described by Shah Alam (1998), regulators want lo be certain thai human health and 
the environment are being protected and general public participation is a key element in a 
regulatory decision-making process for a contaminated site. Affected public should be able to 
comprehend and concur with the model on their terms. This is difficull to achieve without a 
long-term commitment of evaluating and re-evaluating the model results (thus going through a 
validation process) based on data collected for the validation process and for the long-term 
monitoring of the site. Most regulators understand modeling well enough to know that a model 
cannot be proven to be "correct." Rather, they are seeking evidence that the model is sufficient 
for decision making and that model predictions are being thoroughly tested against site-specific 
data. 

As described by the National Research Council (NRC, 2000), monitoring and validation 
are needed to improve the understanding of the contaminant fate and transport processes and can 
be used to recalibrate and revise conceptuaf and predictive models. NRC (2000) indicates that 
the ability to monitor and validate is essential to the application of any corrective action to a 
subsurface contamination problem, but the knowledge and technology bases to support these 
activities are not l l l y  developed. NRC (2000) thus identifies a number of research needs related 
to the model validation issue that include the development of validation processes, the 
development of tools to help judge model performance, and the development of ways to 
determine the key measurements that are required for the model validation process. 

The interest in validating model predictions also arises h r n  the scientific need to better 
understand the physics of flow and transport in highly complex systems such as the geologic 
environment. In fact, the invalidated models provide a scientific challenge to researchers to 
identify the sources of errors in the model and whether these are related to processes that are 
unresolved or unaccounted for, mode1 structure and conceptual model or input data In the search 
for these error sources, new scientific understanding can be gained and progress is usually made 
by these discoveries. 

Aside from these scientific and regulatory motives, and from a relatively legal 
perspective, the need for subsurface model validation in the U.S. arises from at least two sources 
(Davis and Goodrich, 1990; Davis et al., 1991). The Code of Federal Regulations states 
explicitly in 10 CFR Part 60.21(c)(l)(ii)(F) that "Analyses and models that will be used to 
predict future conditions and changes in the geologic setting shall be supported by using an 
appropriate combination of such methods as field tests, in-situ tests, laboratory tests which are 
representative of field conditions, monitoring data, and natural analogue studies." Although this 
does not call for the strictest application of the term "validation," it does require field tests and 



in-situ tests as means for supporting the model (i.e., supporting its use for decision making, 
which is consistent with our model validation definition presented earlier). The second source 
quoted by Davis ef aI. (1991) is the legal precedent establishing the need for validation, which 
was set based on the court case involving the State of Ohio and the U.S. Environmental 
Protection Agency (EPA) [23 ERC 2091, Sixth Circuit, 19861. In that case, the court decided that 
EPA had failed to establish the accuracy of a model that was used for predicting sulfur dioxide 
emissions from two electric utility plants, as compared with the actual discharge from the plants. 
The adequacy of the model for its intended use (establishing limitations on sulfur dioxide 
emissions at the specific power plants) was not checked using the site-specific validation tests. 

2.2 Challenges 

A number of issues combine to make the validation of subsurface flow and transport 
mdels  a very difficult and challenging task. First, data are usually lacking for building, 
calibraling and running the model. Such data are lacking for both simple deterministic models 
and highly complex stochastic models. Even if there are extensive databases for a particular site, 
they are often limited with respect to the variety of conditions and parameters that need to be 
monitored and characterized. With the current level of data scarcity and uncertainty, model 
validation becomes a formidable task. The question of validation is even more challenging when 
modeling radionuclide transport thousands of years into the future since no data are available to 
use for comparison against model predictions at this time scale. In addition, lack of knowledge 
about future stresses that will affect the groundwater system reduces the reliability of future 
predictions. Despite these challenges, we need to build confidence that model-based decisions 
will not result in unacceptable risks to present or future populations or in degradation of the 
natural environment (Konikow and BredehoeR 1992). Building confidence in the models used to 
support closure of sites is the requirement for validation; developing a validation process that 
allows regulato~y closure of sites with significant groundwater contamination should, therefore, 
be the ultimate goal of any validation strategy. 

Konikow and Bredehoeft (1992) further argue that the only solution to the above 
challenge is the notion that our fundamental understanding of the processes encountered in the 
subsurface will help make defensible long-term predictions. Expert judgment and the approval of 
the scientific community come into the picture under these challenges. Models, however, serve 
to sharpen our professional judgment and increase our understanding of the very complex 
subsurface systems. Heterogeneity is another challenge when it wmes to prediction and 
validation. Heterogeneity makes it dificult to fully characterize the subsurface, especially with 
the difficulty of making subsurface observations. When heterogeneity is significant and data are 
limited, as is the case in many field sites, there may be no objective way of judging the model 
predictions or declaring any degree of satisfaction about the model. It is also important to note 
that even if we can get a highly detailed and reasonably accurate characterization of the 
subsurface parameters, the validation process may still be very difficult. If one tries to obtain a 
detailed prediction of some heterogeneous variables such as the groundwater velocity or the 
contaminant wncentration, it may be impossible to collect enough data to verify whether or not 
the predictions are correct. On the other hand, we may be satisfied with reliable descriptions of 
larger-scale trends such as averaged velocity or concentration over a specified volume andor 
time interval. Unfortunately, it may be difficult to estimate such trends from the limited numbers 
of point measurements, which are typically collected in field experiments (McLaughlin and Luis, 
1990). 



A major difficulty has also been deciding on quantitative criteria on which to base the 
decision that there is "agreement" between predicted and measured values (Voss, 1990). 
Furthermore, uncertainties inherent in describing and modeling complex natural systems make it 
difficult to discriminate between inadequacies in the conceptual models, mathematical models, 
and input data. 

Another challenge for model validation is the high cost of obtaining data for testing the, 
which should be considered in designing any validation plan. Tnere is a limit beyond which 
increased investment in model \~alidation efforts (both data collection and analysis) does not 
significantly increase confidence in the model and adds little value to the end user (Sargent, 
1990). Therefore, the model validation process requires consent between concerned parties 
regarding the level of confidence required for the model to be validated, keeping an eye on the 
cost that is needed to achieve this confidence level. This type of consent or agreement may be 
difficult to attain, as there may be conflict of interests or disagreement on the meaning, 
objectives and purposes of model validation among the parties involved in the process. 

3. REVIEW OF TERMINOLOGY AND DEFINITIONS 

A first step in developing the validation methodology is to define the meaning intended 
for different terms related to model validation and to review previous efforts and strategies of 
model validation. Validation, verification, and confirmation are all concepts in terms of 
groundwater numerical models that not only do not have established and generally accepted 
practices, there is not even widespread agreement on the meaning of the terms as appiied to 
models. It is, therefore, important to define the different terms used in the fiterature and to 
illustrate the intended meaning of these terms when used in this report. In addition to these 
definitions, we present in this section the different arguments and the debate about the meaning 
of the term "validation" as it applies to groundwater models. 

3.1 Models 

A model is simply an abstraction or a simple representation of a real system or process. 
One can distinguish between three types of models: conceptual, mathematical, and numerical. A 
conceptual model can be defined as a hypothesis for how a system or a process operates and is 
qualitative in nature. This operation can then be expressed quantitatively as a mathematical 
model. Mathematical models are abstractions that replace objects, forces, and events by 
expressions that contain mathematical variables, parameters, and constants (Konikow and 
Bredehoefi, 1992). When the mathematical model is implemented via a computer code to 
perform the actual model computations, the numerical model for the problem at hand is 
established. 

For predicting groundwater flow and transport at field sites, models have to include a 
number of components: (1) a conceptual model of flow based on geologic, hydrologic, and 
chemical inforination, (2) a mathematical flow model expressing the processes affecting the flow 
system (e.g., recharge, source/sink terms), (3) a computer code incorporating the mathematical 
model of the flow system, (4) a conceptual transport model based on the d e f ~ t i o n  of the 
contaminant source, release scenarios, and transport properties of the subsurface environment, 
(5) a mathematical transpon model, and (6) a computer transport code for solving the 
mathematical transport equations. 



One can also distinguish between "generic models" and "site-specific models." The 
computer codes that are used to solve the mathematical flour and transport equations are referred 
to as generic models, whereas after combining them with the conceptual models (model 
structure), input data and boundary conditions for a particular geographical area, they become 
site-specific models. These site-specific models thus rely on four components to predict flow and 
transport: model structure (conceptual models), initial and hundary conditions, the input data; 
and the computer code. The inadequacy of any of these items or their nonconformity with the 
real system will most likely be an obstacle to accepting the model as the basis for making 
decisions. However, as will be seen later, the adequacy of these items does not necessarily mean 
a "valid" prediction. 

In terns of their use, models can be classified into two types: research or analysis models 
and predictive or decision-making models. Research models are common in studying and 
understanding different phenomena in the subsurface and they usually rely on hypotheticai 
domains or well-characterized field sites. Many of the field experiments that were covered in a 
number of international workshops and symposia on model validation (see next section) can be 
described as research or analysis models. These models were focused on understanding a number 
of transport issues, e.g., matrix diffusion in fractured media and kinetics of sorption in the 
h t u r e s  and the surrounding porous blocks. Predictive models, on the other hand, are mainly 
used to support and aid a regulatory decision regarding a subsurface contamination issue. 
Performance assessment models of high-level nuclear waste repositories, predictive models of 
radionuclide transport associated with these repositories and models of nuclear testing sites 
belong to the category of predictive models. 

3.2 Model Calibration 

In the earth sciences, the modeler is commonly faced with the inverse problem: the 
distribution of the dependent variable (e.g., head) is the most well-known aspect of the system, 
whereas the distribution of the independent variable (e.g., conductivity, porosity) is the least well 
Imown (Oreskes et a t ,  1994). Model calibration is the process used to solve this inverse 
problem. That is, model calibration is the process of tuning the model to identify the independent 
input paameters by fitting the model results to some field or experimental data, which usualiy 
represent the dependent system parameters. The calibration process can be quantitatively 
described by the goodness of fit. When the model is used for long-term prediction (e.g., 1000s of 
years at underground nuclear testing sites), it is often calibrated using short-term data. This 
calibration cannot replace validation, but can only be considered as part of the site 
characterization and model formulation process. In some situations, the validation task may 
become one of a calibration, whereby experimental data that are collected for the validation 
purpose are used during the modeling effort. Although this t o e  of calibration builds some 
confidence in the model results, especially if the calibration fit is good, calibration by itself is not 
validation because the input parameters of the model are found based on the experimental results 
that can no longer be considered as validation data (Davis et aL, 1991). Furthermore, a good 
calibration of a model does not necessarily imply that the model is valid beyond the values and 
conditions of this calibration. Therefore, field or laboratory experiments for model validation 
studies should follow the model simulations to ensure that the validation effort is not simply a 
calibration effort based on those experimental results (Davis et a!. , 199 1). 

Andemn and Woessner (1992a) point out the need to distinguish between calibration, 
verification and validation, while realizing that the three processes are simply tests of model 



accuracy. In their description, calibration is a nial-and-error adjustment of parameters that can be 
done manually or using an automated parameter estimation code, whereas model verification is 
aimed at establishing a greater confidence in the model by using a set of calibrated parameter 
values and stresses to reproduce a second set of field data. Verification can be used as pan of the 
modeling protocol for testing the governing equations, the numerical model, and the code. 
Konikour (1986) also defines a verified model as the model for which the accuracy and 
predictive capability have been proven to lie within acceptable tolerance using tests independent 
of the calibration data. According to Anderson and Woessner (1992a), model calibration and 
verification demonstrate that the model can mimic past behavior, whereas model validation tests 
whether the model can predict the future, which they call a predictive validation or postaudit. 
They further assert that this type of postaudit should be performed a long time after the initial 
calibration and prediction are made so as to allow the system represented by the model to evolve 
away from the calibrated slate. With a more or less similar view, de Marsily (1990) states that 
the calibration and validation of groundwater flow models a1 sites characterized by low 
permeability media must take into account that the present observed state of the groundwater 
system map be the result of a long transient histor)'. 

3.3 Code Verificstion 

There should be a clear distinction between code validation/verification and model 
validation. A computer code is said to be certified if the code is properly i~erified and properly 
documented (Tsang, 1991). Verification of a mathematical model or its computer code is 
obtained when it is shown that the m d e l  behaves as intended, i.e., that it is a proper 
mathematical representation of the conceptual model and that the equations are correctly 
encoded and solved (Matoszewski and Zuber, 1992). Tsang (1991) argues that it is illogical to 
use the term "code validation," as "validation" questions the appropriateness of the mathematical 
equations and input data and conditions, which are assumed and taken for granted in a code. A 
code can only be certified or tested, but not validated. Validation becomes an issue for a model 
that is developed to answer a site-speci fic question. 

Taking a more philosophical view, Oreskes et al. (1994) define a verified model as one 
whose truth has been demonstrated and argue that it is impossible to demonstrate the truth of any 
proposition except in closed systems. They distinguish between mathematical modeis that may 
be verifiable, just as an algolithm within a computer code may be verifiable, and between the 
models that use these mathematical components, which are never closed. These models contain 
unknown elements that modelers conceptuahze based on expert judgment and require input 

: parameters that are incompletely known. They postulate that verification is only possible in 
closed systems in which all the components of the system are established independently and are 
known to be correct. They go on to demonstrate that if model results compare unfavorably with 
observations, then it can be concluded that something is wrong in the model but if the 
companson is favorable, a dilemma exists in judging the model. If two or more errors cancel 
each other out, there is no way to know that this cancellation has occurred and a faulty model 
may be seen as correct. Their bottom line is that a good match between predicted and observed 
output does not verify an open system. 

Van der Heijde and Kanzer (1997) address in a great detail the issue of code testing for 
i groundwater problems. They focus on testing the code functionality and performance using 

benchmarking with knoun, independently derived solutions, intracomparison using different 
r code functions inciting the same system responses, intercomparison with comparable simulation 
! 



codes, and comparison with field and laboratory experiments. Along similar lines, Beljin (1988) 
uses three levels of model testing for evaluating solute transport models in two dimensions. The 
first level uses analytical solutions to verify the numerical technique and illustrate the behavior 
of the numerical solution. The second level includes hypothetical problems and examines such 
aspects as the model's response to aquifer heterogeneity, anisoiropy, and irregular boundaries. 
The last level involves history matching with field data. 

Konikow and Bredehoeft (192)  also distinguish between code verification and model 
validation. They postulate that the former essentially answers the question: Does the computer 
code provide an accurate solution to the governing partial differential equation for various 
boundary value problems? This can be demonstrated by showing that the code gives good results 
for problems having known solutions, which are very simplified problems. However, after 
adding the different complexities to the code in addressing a certain site-specific problem, the 
question becomes how to prove that the code still gives an accurate solution to the governing 
equations under these complex conditions, for which no analytical solution is available. Konikow 
and Bredehoeft's (1992) answer to this question is that there is no way of assuring such 
accuracy, but only checking simple aspects such as mass balance. We agree that this strict 
validation perspmtive is unachievable given our curreni knowledge and technology levels. 

Another set of studies focus on using faboratory experiments to verify certain 
mathematical equations or constitutive relationships. As an example, Hassanizadeh (1990a) used 
a set of laboratory column experiments to investigate some of the relevant processes in brine 
transport in porous media and to provide partiaI data sets for validating (actually verifying) 
different forms of Darcy's law and Fick's law for density-driven conditions. In his study, the 
experimental (or validation) data were available before selecting the appropriate form of Darcy's 
law and Fick's law to better describe the experimental data. This is in essence completely 
different than the validation process for site-specific, predictive models. 

The ASTM guide (ASTM, 1993) also distinguished between application verification (or 
site-specific model vali&tion/evaluation) and code verification. The former refers to the process 
whereby a model, its computer code, boundary and initial conditions are tested by simulating 
independent data from different hykologic conditions to establish the prdctive capability of the 
m d e l  (Johnson and Weimer, 19%), whereas the latter refers to software testing, comparison 
with analytical solutions, and comparison with other similar codes to demonstrate that the code 
represents its underlying mathematical foundation (ASTM, 1993). 

So in summary, the term "verification" should refer to the demonstration of the ability of 
a generic model (and maybe an analysis model) to solve the governing equations, whereas 
validation should represent the process of post-prediction testing and evaluation of a site-specific 
model for the purpose of supporting the decision making that relies on modeling results. When 
data are available to split between calibration and "verification," it is common to call the process 
of using the calibrated model to reproduce the "verification" data set a model verification 
process. This process is different from the model validation process as it is part of the 
development stage of the model, and apparently, the modelers can and do change the model 
conceptualization if the calibrated model fails to reproduce the verification data set. Model 
validation process comes after the completion of this loop and is aimed at building confidence in 
model predictions that are going to be the basis for decision making. 



3.4 Model Validation 

The term validation is featured prominently in the literature on high-kevel radioactive 
waste disposal. Pescatore (1994) reports that there is a lack of use of the term validation in the 
field of low-level radioactive waste disposal and also, during the first half of the last century, in 
all technical fields. The first technical appearance dates from the mid-1950s and it was adopted 
thereafter in the computer field and elevated to its present status following the computer 
revolution in the 1970s and early 1980s (Pescatore, 1994). The term validation then started to 
appear in some high-level waste safety standards in the late 1980s. A large number of defmitions 
exist for the tenn "validation" within the performance assessment community, and it has been 
used with many different meanings, sometimes in the same report. 

Most of the controversy over validation arises from alternative interpretations and 
perceptions of the meaning of the tern. Interpretations range from an inherently unachievable 
"proof of truth to more pragmatic approaches in waste management with emphasis on the 
subjective assessment of whether models are "good enough" for the application at hand 
(Zuidema, 1994). Different types of classification or categories for the numerous definitions of 
model validation have been presented in the litmature. Here, we combine these classifications 
and categorize the validation defmitions and perspectives into four categories. The following 
four subsections summarize the different definitions and the controversy in the literature 
regarding the meaning and objectives of model validation. 

3.4.1 Scientific Views of Model Validation 

The dictionary definition of valid covers a wide range of meanings (e.g., strong, having 
sufficient strength or force, sound, effective, convincing, fulfilling all necessary conditions, 
founded in truth, logically correct, executed with the proper formalities, having such force as to 
compel serious attention). The scientific view of validation usually implies that models are ' k e "  
representations of reality. The U.S. Nuclear Regulatory Commission (USNRC, 1984) defines 
validation as the process of obtaining assurance that a model, as embodied in a computer code, is 
a correct representation of the process or system for which it is intended. DOE W E ,  1986) 
defines validation as a process to ascertain that the code or model reflects the behavior of the real 
world. Niederer (1990) argues that three validation types can be invokd (1) the Popperian (after 
Popper, 1968) approach of Ealsifylng wrong theories (more of a philosophical view), (2) the 
positive proof approach, which is partly achieved by showing that the theory (or model) is able 
to explain pertinent observations and experimental data as this ability is a necessary but not 
sufficient condition, and (3) the consensus-based approach proposed by Kuhn (1970), who 
concludes that proof of a scientific theory largely rests on consensus. For a scientific theory, 
consensus-based validation means that acceptance is ultimately based on the feeling that the 
theory works, a feeling that grows h m  repeated successful use. In terms of groundwater model 
validation, the latter type calls for providing ample positive evidence for the appropriateness of 
the model, which will lead to general consensus that the model is adequate. Niederer (1990) 
states "consensus is one aspect of scientific truth.. . However, as far as public acceptance is 
concern4 it is the only one that really counts." Jackson et a!. (1990, 1992) argue that validation 
should be different for general models and specific models. That is, for a general model, 
validation consists of establishing the case for the model such that the model is widely accepted 
within the scientific community. But for specific models, validation consists of establishing a 
case such that one might reasonably expect someone with relevmt technical knowledge would 
consider the model acceptable. Jackson et a! (1990, 1992) consider validation to be about 



establishing whether or not the model is an acceptable representation of the physical system and 
checking that the model is internally consistent and consistent with principles that are generally 
accepted in the scientific community. 

Anderson and Woessner's (1992a) approach to validation has a slightly different 
perspective. They define the strictest form of validation as the demonstration of the model's 
ability to accurately predict the W e ,  which they call a postaudit. Later, Woessner and 
Anderson (19%) provided a less stringent requirement for accepting groundwater models and 
indicated that this acceptance should be based on confirming observations to support a subjective 
judgment. They also emphasized the importance of understanding the role of uncertainty and 
accepting it when dealing with groundwater mdeling. 

The central problem with the language of validation and the strict definition of model 
validation, as seen by Oreskes ei al. (1994), is that it implies an eitherlor situation, bul in practice 
only a few (if any) are entirely confirmed by observational data, and a few are entirely refuted. In 
addition, both terms are affirmative and they encourage the modeler to always claim a positive 
result, which is the reason it is impossible to see a sentence like 'Yhe observed data invalidates 
our model" in published modeling studies (Oreskes et a/., 1994). 

The scientific views of model validation are more suitable, if necessary at all, for theories 
and mathematical developments that need to be validated in a strict sense. For numerical 
groundwater models that are used to support or guide a decision-making process related to a 
subsurface problem, these scientific views are essentially neither achievable nor relevant. 
Accuracy is not always required for using model results as a basis for decision making. If, for 
example, one monitors a noncontaminated area as delineated by a model, one would only try to 
make sure that the clean area is in fact clean regardless of whether the model accurately predicts 
how contaminated the area within the plume is (concentration values). 

3.4.2. Philoso~hical Views of Model Validation 

According to Konikow and Bredehoeft (1 992), philosophical definitions of validation are 
based on two different views. The first of these argues that theories are confirmed or refuted 
based on the results of critical experiments designed to verify the theory consequences. The 
second philosophical perspective is that as scientists, we can never validate a theory or a 
hypothesis but can only invalidate it. Popper (1968) states that a model, theory, or hqpothesis can 
never be proven to be true, no matter how much corroborative data z e  presented; they can only 
be fakified. Consistent with the fmt view, Schlesinger (1979) defines validation as meaning 
"substantiation that a computerized model within its domain of applicability possesses a 
satisfactory range of accuracy consistent with the intended application of the model." However, 
Konikow and Bredehoefi (1992) believe that many, if not most, present-day scientists who have 
considered these issues find themselves in agreement with the second view. They also add that 
groundwater models are subject to improvements via invalidation, but cannot be proven valid 
and that validation cannot add to the fund of knowledge. 

The philosophical view of model validation articulated by Oreskes ef al. (1 994) is that the 
term does not denote establishment of truth but rather legitimacy. They define a valid model as 
one that does not contain known or detectable flaws and is internally consistent. They, however, 
agree with the common view that the establishment of a model's ability to "accurately" represent 
the actual processes occurring in the real system is not even a theoretical possibility. Extending 
their views, Oreskes et al. (1 994) use the term collfirmation to account for the fact that a failure 



to reproduce observed data falsifies the model, but the reverse is never the case. By using as 
numerous and diverse confirming observations as possible, it is likely reasonable to conclude 
that the conceptualization mibodied in the model is not flawed. It is important, however, to 
recognize that confiiing observations do not demonstrate the veracity of a model or a 
hypothesis; they on1 y support its probability (Oreskes et aL, 1994). 

Bredehoeft and Konikow (1993) argue that using the terms "validation" and 
"verification" are misleading as they imply the correctness of the groundwater models, which 
none of the groundwater modelers would claim. They suggest that the groundwater community 
should abandon these terms, and that the term "history matching" used in petroleum engineering 
be used instead. This term encompasses the processes of calibration and validation without 
connotation of correctness. They, however, caution that care should be taken to predict only for a 
time cornparable to the period that was matched. McCombie and McKinley (1993) argue against 
these views and assert that the key problem in the validation issue is to define what level of 
=curacy and what degree of confidence must be achieved in the prediction of specific 
parameters. The decision about how much effort must go into the validation process before the 
model can be considered to be valid is necessariiy subjective and very dependent on the 
complexity of the system and on the objective of using the model in the finst place. McCombie 
and McKinley (1993) further recommend that the subjective aspect of assessing if a model is 
good enough be included in the term "validation." de Marsily et al. (1992) presenl evidence from 
their modeling experience as proof that their groundwater model has been validated or at least 
proven to be not invalid. 

In an attempt to reconcile these two opposing view points, Leijnse and Hassanizadeh 
(1994) postulate that Konikow and Bredehoefi (1992) and de Marsily et a/. (1992) refer to two 
slightly different, yet related, d e f ~ t i o n s  ofthe terms "model" and "validation." They state that 
de Marsily et a[. (1992) invoke a weak definition of the word "model," wherein the mathematical 
equations and simplifying assumptions are included but not the input data. On the other hand, 
Konikow and Bredehoefi (1992) invoke the strong definition of the word "model" where all the 
above components are included in addition to the parameter values, boundary conditions, system 
geometry, and sources and sinks. Parallel to these definitions, the vaIidation may be viewed in a 
weak sense and in a strong sense. Validation in the weak sense refers to the vafidity of the 
conceptual part of the model (Leijnse and Hassanizadeh, 1994), and is applicable to models that 
are used in an analysis mode to analyze a system of interest and to increase understanding of its 
behavior. The strong definition of validation as discussed by these authors implies the validity of 
the model of a given system as a whole, including all input data, which is related to the 
predictive ability of a model in mimicking the right system behavior. When Konikow and 
Bredehoeft (1992) say that 'groundwater models cannot be validated,' they refer to validation in 
the strong sense and they have 'prediction models' in mind (Leijnse and Hassanizadeh, 1994). 

Ln Konikow and Bredehoefi's (1992, 1993) terms, the finding that the model is not proven to 
be invalid does not mean that it is valid. This is true for validation in the strictest sense, but h i s  
author believes that for practical purposes, decision-making purposes, and for moving forward 
toward better understanding, the model success at the invalidation attempts means that the model 
is successfully progressing through the process of model validation. The terms suggested by 
Konikow and Bredehoefi (1993) are mostly he1pN in the model development, building, testing, 
aud usage stages. If the model is accepted by a regulatory agency, then the process has moved 
beyond these terms and the more relevant term is in fact model validation. When it comes to the 



public perception of the term "validation," the term requires as much effort in explanation as do 
terms like "calibration," "history matching," and c'benchmarking." For example, to the Iaytnan, 
the term "calibration" gives the same indication of accuracy and correctness as the term 
"validation." Thus, using and explaining the real meaning of the model validation process should 
not be any different than using and explaining any alternative term. 

Most models, if not all, are not being used to reveal the truth of a system. Of course it would 
be great if models could do so, but they simply cannot. Models are in many cases decision- 
making tools. When a model successfully passes a rigomus development, calibration, and testing 
process, it becomes a reasonable decision-making tool given the limited data used in the 
development process. Acknowledging the role of uncertainty, the model-validation process is 
one crucial stage in the entire process that should be regarded as an additional filter for 
independent model evaluation. The fact is that most of the literature debate is on the terminology 
and not on the process itself. No one argues that the process is unirnportanl, unneeded, or useless 
and no one disagrees on the concepl of using an independent data set to lest the model. The 
disagreement is in what we call it and what the implications are for the term we use. 

Other philosophical views were presented more recently in a series of articles edited by 
Anderson and Bates (2001) focusing on model validation perspectives in hydrological sciences. 
For example, Young (2001) states that the views articulated by Konikow and Bredehoeft (1992) 
and Oreskes et al. (1994) are linked in part to questions of semantics: what is the truth? What is 
meant by terms such as validation, verification, and confirmation? etc. Young (2001) also 
postuiatm that when models are not proven to be false, they can be considered conditionally 
valid in the sense that it can be assumed to represent the best theory of behavior currently 
available that has not yet been falsified. 

In an interesting editorial following the above-cited articles, Bair (1994) presents a 
personal experience from the courtroom, where the groundwater model validation issue was the 
key element of a $500 million lawsuit. He was testi@ng in that trial and was asked to evaluate 
the plaintiffs' and defendant's groundwater models, which predicted migration of contaminants 
for 17,000 feet and 5,000 feet from the injection point, respectively. During the different phases 
of the trial, the plaintiffs attorney used Bredehoeft and KomJiow's (1993) arguments that 
groundwater models cannot be validated, only invalidated. Bair (1994) mentioned that his 
response, which was against this argument, was supported by McCombie and McKinley (1993) 
and de Marsily er aL's (1992) comments on Bredehoefi and Ko~kow's  (1993) arguments. 
Summarizing Bair's (1994) conclusions about this experience, it shows how the jury understood 
the difference between predictions that are certain beyond reasonable doubt (operational or 
confidence-based validity) and predictions that are certain beyond any doubt (strictest form of 
validity). The doubts were probably removed h m  the jury's mind by the amount of site-specific 
data, the small differences between measured and simulated pressures and concentrations, and 
the recognition that no data were presented that invalidated the defendant's model. The 
reasonableness of a modeling effort can only be supported by a large number of confirming 
observations that remove reasonable doubt (Woessner and Anderson, 1996). 

The main point one can capture from the above discussion is that we should use as much 
data as possible to try to invalidate a mcdel to show that it is either certain or uncertain beyond 
reasonable doubt. Reasonable doubt is fundamental to the scientific method, but should not 
prevent us from making predictions; it should cause us to gather sufficient data to rigorously test 
our models so that we make well-founded predictions (Bair, 1994). For performance assessment 



models of nuclear repositories, the regulators in both the United States and Sweden require 
"reasonable assurance" that the models comply with regulatory criteria. This concept recognizes 
that absolute assurance of compliance is neither possible nor required, but model developers 
should provide such information as may be necessary to convince a "reasonable decision-maker" 
that compliance with regulatory criteria would be achieved (Eisenberg el a/. ,  1994). However, if 
such an approach is assumed for validation, there can be no standard answer to the question 
"How much validation is enough?" 

3.4.3 Operational Views of Model Validation 

A number of operational definitions consider validation from a practical and regulatory 
perspective. From the practical perspecti\~e and in the context of groundwater flow models, the 
ASTM (1993) and Brown and Laase (1995) define model validation (or application verification) 
as the process of using a calibrated model to approximate acceptably a second set of field data 
measured under similar hydrologic conditions. Van der Heijde (1990) states thai the objective of 
model validation is 10 determine how well a model's theoretical foundation and computer 
implementation describe the actual system behavior in terms ofthe degree of correla~ion between 
model calculations and independently derived observations of the cause-and-effect responses of 
the actual groundwater system. 

The International Atomic Energy Agency (IAEA, 1982) defines validation to be attain4 
when a conceptual model and its associated computer code provide a good representation of the 
actual processes occurring in the real system. However, depending on the meaning and strength 
of the term "god  representation," this definition may become a scientific one as opposed to a 
praclical/operational one. Flavelte (1992) argues that most of the validation definitions available 
in the literature make explicit reference to the need to demonstrate that a model is a good, 
correct, or suficient representation of reality and that these definitions require subjective 
interpretation but do not recognize the need to measure the accuracy of the model calculations. 
He, therefore, adds establishing the accuracy of the model predictions as a second dimension to 
the definition of validation. In his argument, Flavelle relies on an updated validation definition 
provided by the IAEA (IAEA, 1988), which describes the requirements for validating a model as 
"a model cannot be considered validated until sufficient testing has been performed to ensure an 
acceptable level of predictive accuracy. (Note that the acceptable level of accuracy is judgmental 
and will vary depending on the specific problem or question to be addressed by the model)." 
Borgorinski et al. (1988) follow the IAEA's definition that model validation is c o n h e d  when 
the model provides a good representation of the actual processes that occur in reality. 

It is clear that these operational defmitions rely on a subjective component in the 
judgment of a model's validity. However, any evaluation process for model aspects, including 
the calibration evaluation, has to rely on subjective judgment. There is no unique way to 
structure a process for attaining a reasonable evaluation or guiding the subjective element of the 
validation process. Since subjectivity will always be complement4 by objective, quantitative 
analysis, the balance between the two aspects depends largely on the problem at hand and the 
risk associated with making an unacceptable (or bad) judgment. With the significant progress 
made during the past three decades in regards to the understanding and acceptance of the role 
uncertainty plays in groundwater models, it should not be considered a weakness that subjective 
judgment and hydrogeologic expertise are integral components of the entire modeling (including 
validation) process. 



Tsang (1991) defines validation as follows: "a model, including the conceptualization and 
the code, can be said to be validated with respect to (a) a process or (b) a sitespecific system." 
He argues that one should carry out model validation with respect to various processes, and at a 
certain site, one should identify the relevant processes and the model geometric structure and 
carry out the validation of the model (or group of models) with respect to that specific site. Tsang 
(1991) M e r  states "it is illogica1 to refer to a validated model in the generic sense, but it can be 
stated that a model is validated with respect to a given process, or a group of models are 
validated with respect to a given site." Voss (1990) describes model validity as the process of 
shou7ing that the model is appropriate and adequate for the problem being addressed, is logically 
developed using the best available technology, is supported by high quality experimental and 
observational data, and that the limitations of the model are well understood. 

For performance assessment of nuclear repositories, McCombie et ol. (1990) discuss the 
interplay between achieving robust models and validated models. They argue that a model is 
determined to be robust when there is confidence that any errors will either have little effect on 
performance or be on the consenrative side. However, they also emphasize that we should 
always aim at achieving the best possible understanding of system behavior and a realistic 
modeling of all the important processes involved. Along similar lines, Zuidema (1994) and Frick 
(1994) suppori the idea that it is not critical that models are strictly correct and include aH natural 
details and processes, but that any uncertainty and simplification results in overestimating the 
consequences (conservatism). It is important to recognize that the conservative assumptions 
employed in the modeling pmcess because of lack of data can, at a later stage when more 
information is available, be replaced by more realistic representations. The ignored phenomena 
are thus marked as "reserve phenomena" and may be included in the model at a later stage 
(Zuidema, 1994). 

The concept of conservatism and the requirement that models need to go through a 
validation process represent two processes aimed at assuring the public that decisions made 
based on model results wilt not compromise the public health and safety. However, both 
processes may not actually change the prmnceived public perception about contaminated 
groundwater close to residential areas. For example, to a layman living close to a site where 
drinking water may pose a health risk, it does not matter how much conservatism modelers build 
into the mde l .  For those living far enough from such a place, again it does not matter that much 
what value of risk the contaminated groundwater poses for human health. Thus, the public 
perception is determined a priori regardless of whether modelers use many conservative 
assumptions and whether they use the term "model validation," "benchmarking," "history 
matching," etc. The point is that using the term "model validation" will not mislead any of those 
highly concerned about the problem at hand. For those who are amenable to independently 
evaluating and understanding the modeling pmcess, any used term and the underlying limitations 
will have to be adequately simplified and explained. 

3.4.4 Confidence-building Views of Model Validation 

Davis and Goodrich (1990) identify two acceptance criteria for a given model. The fmt is 
a measure of the adequacy of the model structure (conceptual model, mathematical model) in 
describing the system behavior and the second is a measure of the accuracy of the model input 
parameters relative to experimental results and field observations. Along similar lines, Luis and 
McLaughlin (1992) postulate that model vaIidation addresses the question of whether or not a 
model adequately represents observed phenomena (qualification of the model), whereas accuracy 



assessment addresses the larger question of how well a model will perform under conditions that 
have not yet been observed. They view model validation (i.e., a comparison between model 
predictions and observations) as a first step that establishes the ability of the model to explain 
observed phenomena. If the model passes a set of reasonable validation criteria that build 
confidence in its performance, one can then proceed with an accuracy assessment, which 
assumes that stluctural errors (stemming from conceptual model, mathematical formulation and 
computer code) are negligible (Luis and Mclaughlin, 1992) or are captured in the overall 
uncertainty range. Although conceptual errors will always remain unknown, if the problem is 
cast in a stochastic framework with uncertainty considered in different parameter values, small 
conceptual errors can be considered minor relative to the entire range of uncertainty. However, 
for major concepturtl errors (e.g., not accounting for matrix diffusion in a fractured system, 
neglecting vadose zone processes in a saturated-unsaturated system, etc.) the model will most 
likely not pass any rigorous set of tests and evaluations. 

Neuman (1992) defines the validation of safety assessment models as the process of 
building scientific confidence in the methods used to perform such assessment, and recognizes, 
however, that this confidence-building approach to validation is possibly open-ended, as many 
iterations between modelers and regulators as may be needed. Eisenberg et al. (1994) support the 
idea of confidence building and indicate that this term recognizes that full scientific validation of 
models of performance assessment may be impossible and that the acceptance of mathematical 
models for regulatory purposes should be based on appropriate testing, which will lead to a 
reasonable assurance that the results are acceptable. Hassanizadeh (1990b) differentiates between 
two types of validation efforts. The first is research (or analysis) model validation and the second 
is safety assessment modeling (or predictive modeling) validation. The research model validation 
is a tool that helps one understand processes, uncednties, etc., whereas the safety assessment 
modeling validation or predictive validation is a goal hat helps the decision-making process. 
Sargent (1990) regards validation as a process that consists of performing tests and evaluations 
during model development to determine whether a model is valid or not. Several models or 
versions of a model are usually developed in the modeling process prior to obtaining a 
satisfactory valid model. Tests and evaluations are conducted until sufficient confidence is 
obtained that a model can be considered valid for its intended application. 

In validating a nitrate percolation model, Mummert (19%) indicates that because of 
errors in data collection, input parameters, conceptual and parameter uncertainty, it is difficult to 
see how any groundwater model can be shown to be completely valid in the strictest sense of the 
term. Validation in Mummert (19%) is thus presented as the process of building confidence in 
the model rather than determining its absolute correctness or incorrectness. 

Both opponents and proponents for the term "validation" agree that the main concern is 
one of adequacy and not correctness. That is, the main concern is always whether or not the 
model is adequate for its intended use and whether or not there is sufficient evidence that the 
model development followed logical and scientific approaches and did not fail to account for 
imponant features and processes. Also, it should be noted that determining the adequacy of a 
model or building confidence in its prediction is not a one-time exercise. It is an iterative pmess 
that should be viewed as part of an integral loop with trigger mechanisms or decision points that 
force the process back to the c h a r a c t e r i z a t i o n - c o n c e p t u a l i z a t i o n - b u i l d o n  
loop if the model adequacy tests (or model validation process) indicate the need to do so. 



35 Model Inadequacy 

There are two main reasons for the failure of a model to adequately represent a physical 
system: 1) the general physicaI laws underlying the model may be inappropriate for the problem 
at hand (e.g., using a porous medium assumption for a fractured system where matrix diffusion is 
a strong phenomenon), or 2) the representation of parameters in the model are inappropriate 
(e.g., ignoring spatial variability). It is important to re-evaluate the model and try to identify the 
sources of the mismatch between observed and predicted system behaviors. This is important as 
it helps isolate the possible sources of error and quantify the contribution of each source to the 
total error or mismatch. Three general sources of errors can exist: ermrs in the conceptual model 
itself, numerical errors arising from the solution of the mathematical equations, and errors arising 
from the uncertainties in the input parameters. Tsang (1994) adds the possibility that the field 
data used in validation may not be representative of the real system that is being modeled. No 
matter bow, sophisticated the modeling approach is, when applied to a subsurface flow and 
transport problem, it provides no more than a s~rnplisi~c representation of very complex field 
conditions. In this regard, Konikow (1986) states that models should be considered as dynamic 
representations of nature, subject to further refinements and improvements. As new data become 
available (e.g., through new wells), model predictions can be evaluated, validated or invalidated. 
and then modified if necessary. 

3.6 Discussion 

The above definitions cover a wide scope of different views on groundwater model 
validation. Nevertheless, many of these definitions focus on providing evidence that the model 
under consideration is adequate for its intended use. We postulate that model validation is a long- 
term, iterative pmcess aimed at building confidence in the model as a whole and with trigger 
mechanisms that drive the pmcess back to the beginning if major deficiencies are found. Key to 
this process is the use of a diverse set of tests that should be designed to evalu&e a diverse set of 
aspects related to the model. 

Overall, there is a general agreement between different definitions of validation, which is 
centered around the fact that absolute proof that models are perfect representations of reality is 
usually not required. Adequate representation of reality is what most of the validation definitions 
focus on. However, a subjective judgment wilt eventually answer the subsequent question of 
'bow adequate is adequate?" Davis et al. (1991) mention that the determination of the model 
adequacy should consider the trpes of validation tests, the number of validation tests, the degree 
of agreement between model and the validation tests and the conformity between model 
descriptions and site-specific information. They emphasize the necessity for rigorous 
development of the validation process and the importance of providing regulators with validation 
information that is as inclusive as possible and follows a logical systematic approach. 

An important point here is that the tests of model predictions should be suitable for the 
regulatory purpose of undertaking the modeling exercise in the first place. That is to say that the 
validation tests should not be focused on whether the model is scientifically correct for all 
conditions, but rather on the adequacy of the model for the intended regulatory purpose. For 
example, a transport model predicting the spatial-temporal distribution of contaminant 
concentrations can be impossible to validate in terms of matching measured and predicted 
concentrations, but can be validated or invalidated from a regulatory perspective (e.g., whether 
or not the plume will reach a certain compliance boundary within a certain time frame). In this 



case, the model validation exercise should be tailored to this purpose. That is, if the model 
predicts that the plume will not reach that boundary, experimental evidence is needed to support 
thaf prediction regardless of the mismatch between predicted concentrations and field-measured 
concentrations. What is important in this case is whether any field evidence indicates faster (or 
slower) transport rates, thus earlier or later mass arrival, than predicted. 

It is clear that often-quoted statements such as "groundwater models cannot be validated" 
and "groundwater models can only be invalidated" (Konikow and Bredehoeft 1992, 1993; 
Bredehoefi and Konikow 1992, 1993) refer to validation in only the strictest sense, responding to 
a concern that the layman's possible misconceptions are of predominant importance. 
Unfortunately, such statements may lead to a laid-back attitude on the part of researchers, 
consultants, and even regulatory agencies when it comes to evaluating model predictions. With 
the perception that no matter what we do, the groundwater model will never be validated, 
temptations are high that good model development, building, and calibration are the end of the 
story and nothing can be done more than a monitoring well placed downstream, even though the 
downstream direction itself may need to be validated. All groundwater modelers agree that their 
modeis cannot be validated in the strictest sense (at least with present-day technology), but 
similarly agree on the importance of post-prediction testing and evaluation. By expanding our 
definition of validation to encompass a long-term process of confidence building, modelers and 
model users can develop rigorous validation processes that will ultimately improve model quality 
and the quality of decisions based on models. 

With the state of current knowledge and technology, we believe that the operational and 
confidence-building definitions of model validation are more amenable to implementation and 
practicability, especially when predictions are obtained for thousands of years into the future. 
The definitions essentially lead to an iterative pmess  that is aimed at adjusting model 
conceptualization, structure, and input as new data become available in such a way that reduces 
prediction uncertainty and builds confidence in the model results. Furthermore, when there are 
insufficient data to split between calibration and short-term validation, one has to answer the 
regulatory concern based on model results and a limited number of field activities that should be 
carefully designed in light of the understanding of the system behavior provided by the model 
and available data. 

4. REVIEW OF GROUNDWATER MODEL VALIDATION STUDIES 

Research on model validation is extensively reported in the literature, but unfortunately 
does not provide a quantitative approach or outline a step-by-step procedure for achieving any 
type of model validation. In this section, we review some of the major studies, international 
conferences, projects, and symposia that were mainly devoted to address the issue of subsurface 
model validation. In the area of toxic waste management, a number of authors (e.g., Moran and 
Mezgar, 1982; Huyakom et al., 1984; van der Heijde er al., 1985; van der Heijde, 1987; Beljin, 
1988) have considered the question of whether a model used in a safety assessment program is 
valid in making appropriate long-term predictions. In addition, during the late 1980s, an effort 
was made to establish a groundwater research data center for the validation of subsurface flow 
and transport models (Miller and van der Heijde, 1988; van der Heijde el ai., 1989). 

In the area of nuclear waste management, the need to validate goundwater models has 
received increased emphasis. This has led to institutionalized and publicized programs for 
validation of hydrogeological models. A number of international cooperative projects such as 



INTRACOIN (1984, 1986), HYDROCOIN (Grundfelt, 1987; Grundfelt et al., 1990), 
INTRAVAL (Andenson et a l ,  1989; Nicholson, 1990), STRIF'A (Herbert et al., 1990), 
CHEMVAL (Broyd et aL, 1990), BIOMOVS (SSI, 1990) were devoted to the validation of 
models. Model validation was also extensively discussed in symposia including GEOVAL87 
(1987), GEOVAL90 (1990) and GEOVAL94 (1994). The journal Advances in Water Resources 
dedicated two special issues to the topic of model validation (AWR, 1992a, b). Additionally, a 
wealth of literature has been published on validation in the field of systems engineering and 
operations research (Tsang, 1991), some of which may be useful for subsurface model 
validation. Examples cited by Tsang (1 99 1) include Balci (1 988, 1989), Balci and Sargent (1 98 1, 
1982, 1984), Gass (i983), Gass and Thompson (1980), Oren (1981), Sargent (1984, 1988), 
Schruben (l980), and Zeigler (1976). 

The Swedish Nuclear Power Inspectorate, SKI, initiated and completed three 
international cooperation projects to increase the understanding and credibility of models 
describing groundwater flow and radionuclide transport. The INTRACOIN project IS the first of 
these, and it focused on verification and validation of transport models. The HYDROCOIN study 
was the second study and represented an international cooperative project for testing 
groundwater-modeling strategies for performance assessment of nuclear waste disposal. The SKI 
initiated the study in 1984, and the technical work was finalized in 1987 (Swedish Nuclear 
Power Inspectorate, 1987). The participating organizations were regulatory authorities as well as 
implementing organizations in 10 countries. The study was devoted to testing of groundwater 
flow models and was performed at three levels: computer code verification, model validation, 
and sensitivity/uncerkhty analysis. 

Based upon lessons leaned from rNTRACOIN and HYDROCOIN, international 
consensus grew prior to and during the GEOVAL Symposium in Stockholm in April 1987 to 
h g i n  a new project dealing with validation of geosphere transport models. This new 
international cooperative project, named NlXAVAL, began in October 1987. As with the 
preceding projects, MTRAVAL was organized and managed by the SKI. The project proposal 
was based upon a technical proposal developed by an international ad-hoc group from eight 
selected nuclear waste programs and institutes (Nicholson, 1990). 

The INTRAVAL project was established to evaluate the validity of mathematical models 
for predicting the potential transport of radioactive substances in the geosphere (Swedish Nuclear 
Power Inspectorate, 1990). The unique aspect of INTRAVAL was the interaction between the 
experimentalists and modelers simulating the selected test cases for examining model validation 
issues. The test cases selected consisted of laboratory and field transport experiments and natural 
analogue studies that incorporate hydrogeologic and geochemical processes relevant to safety 
assessments of radioactive waste repositories. 

These international projects and symposia focused on qualitative aspects of model 
validation. Very few, if any, touched on quantitative issues. In addition, some of the studies 
focused on validating a single aspect or observed phenomenon (e.g., matrix diffusion), and none 
addressed how to validate a predictive, long-term model in a quantitative manner. In the next 
section, we review some of the studies that tried to evaluate the reliability of predictive models 
(mostly flow models) that were used for relatively short-term predictions. 



4.1 Predictive Reliability and Postandit 

A number of studies have explored the predictive reliability of reasonably calibrated 
models by a posterior comparison between model predictions and observed data (e.g., Person and 
Ko~kow, 1986; Konikow; 1986; Freyberg, 1988). These studies showed that prediction 
accuracy was moderate. However, the common situation in these studies was that the calibrated 
model was used to predict system behavior under modified conditions (future predicted system 
stresses, modified boundary conditions, or different parameter values). In particular, Freyberg 
(1988) showed that the ability of a calibrated parameter set of a groundwater flow model to 
reproduce observed data was not an indicator of the ability of that parameter set to predict system 
response under modified conditions. He reports that good calibration does not necessarily 
guarantee equally good prediction. Person and Konikow (1986) and Konikow (1986) recalibrated 
a groundwater flow and solute transport model of an irrigated stream-aquifer system because of 
the discrepancies between prior predictions of groundwater salinity and observed outcome. They 
found thal the calibration period (covering some seasonal variations in the river-aquifer 
interaction and imgation cycles) needed for accurate transport prediction is longer than that 
required for the flow model predictions. The metric used to judge the prediction accuracy of the 
model was the spatially averaged gmundwater level for the flow model and the spatially 
averaged groundwater salinity for the solute transport model. 

A model postaudit is defined as a comparison of a model's predictions to the actual 
conditions of an aquifer as a result of the change in conditions (Elrown, 19%). Then, "if the 
model's prediction was accurate, the model is validated for that particular site (Anderson and 
Woessner 1992b, p. 9)." Anderson and Woessner (1992a) reviewed five postaudits of modeling 
studies in which the models did not accurately predict the future behavior of the modeled system. 
These five studies include the studies by Konikow (1986) and Person and Konikow (1986) that 
we discussed earlier. The other three studies are summarized here. Alley and Emery (1986) 
examined W c t i o n s  of 1982 water-level declines and stream flow depletions for the Blue River 
Basin, Nebraska, made in 1965 using an electric analog model. The postaudit showed that the 
model underestimated the depletion of the stream flow and overestimated the decline of the 
groundwater levels. Reanalyzing the model structure, Alley and Emery (1986) concluded that the 
ermr in the prediction was a result of uncertainty in the conceptuai model of the Blue River 
Basin. 

The next study reviewed by Anderson and Woessner (1992a) is a postaudit study (Lewis 
and Goldstein, 1982) of a twodimensional groundwater flow and solute transport model that was 
developed and calibrated by Robertson (1974). The flow model was calibrated to an assumed 
steady-state flow field and the transport model was calibrated to observed concentrations of 
chloride in groundwater in 1958 and 1%9. Robertson (1974) then used the calibrated model to 
predict chloride and tritium concentrations in 1980. Through the postaudit study, Lewis and 
Goldstein (1982) found that the contaminant plumes predicted by the model extended farther 
down gradient than the actual plumes and attributed this deviation to the conservative worst-case 
assumptions in the model input, the simplicity of the conceptual model, and the inaccurate 
estimate of subsequent waste discharge and aquifer recharge conditions. The original model of 
Robertson (1974) viewed the aquifer as a continuous porous medium, and it is likely that the 
flow in this aquifer would be better approximatd using a dual-porosity model that includes 
h t u r e  flow as well as matrix diffusion (Anderson and Woessner, 1992a). 



The h a l  postaudit study reviewed by Anderson and Woessner (1992a) is the study of 
Flavelle et ai. (1991) that simulates the release of hydrogen ions h m  a tailings pile situated in 
glaciofluvial deposits in Ontario, Canada. The flow model of that study was calibrated to 
measured heads in 1989 within the inner part of the plume where pH was less than 4.8. The 
salute transport model was calibrated by matching plume position to observed position in 1983 
and 1984 through varying the distribution coefficient. The calibrated model was then used to 
predict the plume distribution in 1989. Data collected in 1989 showed that the model accurately 
predicted the pH values in the inner core of the plume but not at the outer edges. FlavelIe el a/. 
(1991) concluded that even though their site is one of the most thoroughly studied uranium 
tailings sites in Canada, the data were not complete enough for a successful model validation. 

Weaver el a/. (1996) performed a postaudit on two groundwater flow models that were 
used to design a well array for a groundwater capture and containment system installed along the 
boundary of a manufacturing facility. The first model was an analytical model for which the 
postaudit indicated that the performance of the initial system design provided by this model did 
not meet expectations. This led to using a numerical model to design an enhanced system, for 
which a detailed postaudit could not be performed, as the system was in place for a short period 
of time. However, a cursory review of the numerical model results versus observed conditions 
was performed. The results of the postaudit indicated that the deviations of models' predictions 
from actual water levels could be mainly attributed to changes in system conditions (pumping 
rates, variations in well eficiencies, and limitations on total available drawdown) and aquifer 
heterogeneity. 

An interesting discussion related to the postaudit concept is presented by Brown (1996). 
The previous studies all focused on evaluating the model and conducting the postaudit long after 
the model had been accepted and used for decision making. So, although the postaudit may 
enabie the modeler to improve the model and benefit h m  the knowledge gained by the new 
field data, the improvement can only take place after actions have been taken that were based 
upon the prediction. Therefore, the postaudit is not something that helps a model withstand 
attrmpts at invalidation prim to decision making (Brown, 1996). An alternative to this type of 
model postaudit is the field postaudit that can be performed after the prediction but before the 
final decision is made based on the prediction. If some test of a modeling prediction is required 
prior to decision making, a field audit will provide information of a direct and relevant nature to 
evaluate the adequacy of a model's prediction. This type of evaluation is what model sponsors 
and regulators usually call model validation. 

4.2 Review of Proposed Validation Strategies 

In the context of performance assessment of high-level radioactive waste repositories, 
Davis and Goodrich (1990) and Davis et a!. (1991) propose a strategy that focuses on 
demonstration of model adequacy in representing the real system, given pertinent regulatory 
requirements, rather than on proving absolute correctness of the model from the purely scientific 
point of view. In proposing this strategy, Davis et a!. (1991) take into account the following 
seven issues: (1) models of performance assessment can never be validated, (2) validation is 
aimed at building confidence in the model rather than providing a "validated model," (3) model 
validation implies comparison to reality, but compliance with the scope of regulatory 
requirements is the overall objective, (4) comparisons to reality should consist of comparing the 
model results to laborato~y and field experiments, natural analogues, and site-specific 
information, (5) these comparisons will only answer the null hypothesis that the model is invalid, 



with the rejection of this hypothesis building confidence into the model, (6) the validation 
process should consider all plausible conceptual modeis, and (7) in comparing model predictions 
to experimental data, a distinction should be made between testing the model structure and 
testing model input. 

The proposed strategy in the above mentioned two studies consists of ten steps: (1) d e h e  
a validation issue, (2) develop a conceptual model or models, (3) develop a mathematical model, 
(4) identify andtor design an experiment that addresses the validation issue, (5) defme 
performance measures to be used for model comparisons, (6) quantify the uncertainty associated 
with the input data and the data available for comparison with the model output, (7) define the 
acceptance criteria or acceptable model error based on regulatory requirements and data 
uncertainty, (8) simulate the experiment, (9) perform the experiment in the laboratory or field, 
and (10) evaluate model results based on the acceptance criteria. 

For validating transpari models for use in repository performance assessment, Jackson ei 
al. (1990, 1992) propose a methodology that includes the following 12 steps: (I) review models, 
(2) review data, (3) calibrate a specific model, (4) define acceptability of the model with regard 
to its intended purpose, (5) predict and test, (6) compare with alternative models, (7) analyze 
discrepancies, (8) assess parameters, (9) present study for review, (10) consider implications, 
(I I)  suggest improved experiments, and (1 2) review consistency. 

Along similar lines, Tsmg (1987) pointed out the need to differentiate between model 
structure (geometric structure, geologic units, heterogeneity, etc.) and model processes 
(dispersion, advection, matrix diffusion, colloidal transport, etc.). He indicates that failure in 
matching modeling results with field data could be due to errors in the identified model 
processes andlor model structure. Furthermore, Tsang (1987) makes the distinction that model 
processes can be validated generically, but model structure validation is a site-specific task. 
Similarly, Ababou ei al. (1992) distinguish between testing procedures aimed at checking the 
internal consistency of complex numerical models and 'groundtruth' experiments, which aim at 
overall assessment of the model applied to a particular field site. In addition to validating model 
structure and model pmesses, Tsang (1987) also proposes the urgent need to validate the 
procedures for processes and structure identification and the procedures for simplification and 
conceptualization. Tsang (1989, 1991) reports the need to validate every step of the modeling 
process in an iterative manner for models that are used for long-term predictions with emphasis 
on adding an element to the modeling process that can be used to suggest what further 
measurements are needed to improve the confidence level in the model predictions (e.g., Data 
Decision Analysis, Pohll and Mihevc [ZOOO]). Tsang (1991) also emphasizes the need for 
advancing scientific knowledge in related fields, for multiple assessment groups independently 
studying the same site, and for presenting the modeling efforts in open literature for public 
scrutiny and evaluation by the scientific community. 

Voss (1990) divides the methodology developed for use within the DOE Civilian 
Radioactive Waste Management Program into the following thee general stages: (1) maintaining 
a mord of model development, (2) performing laboratory and field investigations to critically 
test the made1 and its premises (e.g., theories, hypotheses, submodels), and (3) carrying out a 
sequence of formal technical reviews by scientific experts. Voss (1990) also focuses on the 
importance of approval by the international scientific community regarding model development 
and model validation. This is to be achieved through comments on repons published in peer- 
reviewed journals. Voss (1990) also quotes from Kuhn (1982) that publishing the results of 



theoretical predictions and measurements in professionally accepted text (textbooks in particular) 
is in itself establishing reasonable agreement: 

"It follows that what scientists seek in numerical tables is not usually 'agreement' at all, 
but what they often call 'reasonable agreement.' Furthermore, if we now ask for a criterion of 
'reasonable agreement,' we are literally forced to look in the tables themselves. Scientific 
practice exhibits no consistently applied or consistently applicable external criterion. 
'Reasonable agreement' varies from one part of science to another, and within any part of 
science it varies with time. ..I now conclude that the only possible criterion is the mere fact that 
they appear, together with the theory from which they are derived, in a professionally accepted 
text." 

Flavelle (1992) proposes a methodology that focuses on the quantitative evaluation of 
model accuracy when calibrating and validating a model. The method includes performing a 
regression analysis of predicted values and measured data with the regression coefficient of the 
regression line interpreted as an empirical indicator of model bias and the standard error 
interpreted as the uncertainty in the validation. This interpretation provides an initial evaluation 
of the validation results and the basis for decisions about the usefulness of the model and about 
the need for more detailed analysis of the validation data. In addition to the simplicity and wide 
understanding implicit in this analysis, Flavelle (1992) indicates that the approach has the 
advantage that the validation and calibration statistics can be compard to ascertain if there has 
been a change in the conditions being simulated, implying that the model does not adequately 
account for all the important processes. 

A linear regression of calculated against measured data provides an initial method to 
evaluate empirically the quality of the data fit (Falvelle, 1992). Bias in the model and uncertainty 
in the i q u t  and measured data would be expected to affect both the slope of the regression line 
and the standard error of the regression. Based on this linear regression, one needs to statistically 
test the assertion that the slope of the regression line is unity and that the intercept of the line is 
zero. Hypothesis testing can be used for this purpose with the null hypothesis for the slope being 
&: slope = 1, and the alternate hypothesis is Hi slope # 1. The test statistic is ((slope-1) + 
standard deviation of the slope). This is to be compared to the critical value of the tdistribution 
at (n - 2) degrees of freedom (n is the number of data points) and (1 - 0 . k )  at the a level of 
significance, t ( n  - 2,l-0- 5a) (Falvelle, 1992). If the absolute value of the test statistic exceeds 
the critical value, the null hrpothesis is rejected. In a similar manner, the null hypothesis of a 
zero intercept can be examined. Failing to reject both null hypotheses does not mean the model is 
free of biases, only that this analysis fails to identify any bias (Flavelle, 1992). 

Davis and Goodrich (1990) suggested that the deviations of the calculated values from 
the observations should be examined for trends to identify model bias. The deviations between 
calculated and observed values correspond to the detiation of observed versus predicted &tit 

points from the 45" line on the linear plot. Trends in the set of deviations are what cause the 
slope of a regression line to vary h m  unity. Regression analysis has a compelling advantage 
over analysis of the deviations, as it has been shown that the assumption that the regression 
residuals are normally distributed is not unreasonable (Draper and Smiih, 1981), while the 
deviations between calculated and observed data may not be normally distributed. Statistical 
analysis of non-normally distributed data usually requires non-parametric statistical tests, which 
are more complex than parametric tests used for normally distributed data (Flavelle, 1992). 



Luis and McLaughlin (1992) propose a stochastic approach to model validation and apply 
this approach to a two-dimensional, deterministic, unsaturated flow model for predicting 
moisture movement during a field experiment carried out near Las Cruces, New Mexico. The 
model they tried to validate was based on using effective parameter values that were obtained 
from a large number of soil samples collected before the infiltration experiment at the site. They 
assume that the model objective was to predict the mean distribution of moisture content over 
time and space, and postulate that this distribution describes the large-scale flow behavior of 
most interest in practical applications. The other assumption of their study is that the 
observations made for the purpose of mcdel validation are small-scale observations collected at 
sparse points in space and over time. 

Luis and McLaughlin (1 992) postulate that the differences between predicted and 
measured moisture content can be attributed to three error sources: (1) measurement errors, 
which represent the difference between the true values and the small-scale values of moisture 
content, (2) spatial heterogeneity, which represents the difference between the largescale trend 
that the model is intended to predict and the true small-scale values, and (3) model error, which 
represenis the difference bemeen the model prediction and the actual large-scale trend. By 
expressing measurement miduals in terms of these three components, Luis and McLaughlin 
(1992) use perturbation analysis and derive the relationship between the measurement residual 
variance, the actual moisture content variance and the measurement error variance that is only 
related to the measuring device. This relationship holds only under the assumption that model 
errors are negligible, and once developed, it can be used to develop statistical tests, which check 
the hypothesis that the model error is indeed negligible. 

Luis and Mchughlin (1992) then applied this approach to the well-instrumented Las 
Cruces idiltr&on experiment mentioned earlier. They tried to validate a two-dimensional, 
numerical model that describes soil properties at the site by a set of spatially uniform effective 
moisture retention and log hydraulic conductivity parameters, which are inferred from a large set 
of soil samples collected before the experiment was conducted. The validation approach 
indicated that this model was able to predict the behavior of the moisture plume at time scales of 
two years and space scales of 20 meters, but it was not clear that the model would be able to 
work equally well over longer temporal and spatial scales. The details of this approach are 
presented in Appendix E and we propose to adapt and use this approach for the current validation 
pian. 

Although this approach provides a quantitative measure to model validation through 
hypothesis testing, Luis and McLaughlin (192)  caution that this approach should not be blindly 
applied. In their application to the Las Cruces experiment, which has an unusually extensive set 
of soil data and validation measurements collected over horizontal and vertical distances of 
several meters and over time scales of a few years, they could not reach to a conclusion 
regarding the ability of the model to predict the observed moisture content at later times. In 
addition, Ababou et 01. (1992) assert that this approach, although very valuable, is not quite 
complete since the hypothesis that the model is false remains untested, and the probability of 
accepting a false model cannot be evaluated by this technique (Chapman ef a!., 1994). To do this, 
one would need to postulate another 'complementary' model, or class of modeis, known to be 
always true if the model being tested is false. To define and implement such compiementary 
models in an exhaustive fashion is quite a difficult task in the case of spatially distributed 
phenomena (Ababou ef a]., 1992). 



Mummert (1996) used two validation approaches to evaIuate a nitrate percolation model. 
The first validation method used is a point validation method, where the model accuracy for 
poht predictions is assessed by calculating the coefficient of determination, relative error and 
standard error. Tne second validation method used is the statistical validation, whereby Monte 
Carlo simulations are used to obtain distributions of model predictions. The hypothesis that field 
data represent "reasonable" samples h m  the distribution of model predictions is tested by 
checking whether observed values lie within the five and the 95 percent quantiles of the 
distribution. 

In Appendix VI of the Federal Facilities Agreement and Consent Order (FFACO, 2000) 
for the underground test area (UGTA) at the Nevada lest Site (NTS), the model validation 
pmess  has a more general and encompassing definition. The ten steps constituting this process 
are: I) establishment of the m d e l  purpose, 2) development of conceptual model, 3) selection of 
a computer code, 4) model design, 5) model calibration, 6) sensitivity and uncertainty analyses, 
7) model verification, 8) predictive simulations, 9) presentation of m d e l  results, and 10) 
postaudit. This definition implies that to be validated, a model has to go through the entire ten 
steps using scientifically and technically sound appmaches as appropriate for each step. 
Referring back to the discussion in Section 3.3 on the difference between code verification, 
model verification and model validation, one can see that the ten-step strategy is better termed its 
"overall modeling strategy." 

What is not clear in the above UGTA strategy is how the five-year proof-of-concept, also 
prescribed by the FFACO (2000), fits into this ten-step model validation strategy. Also, the 
details of the postaudit stage and the criteria that govern the pass-fail decision are not obvious. 
We believe that the proposed validation strategy provides a forum and a structured, systematic 
approach for making this decision. Therefore, for the CNTA model, the proposed validation 
strategy can essentially be used to achieve the objectives of step 10 (postaudit) of the UGTA 
strategy as well as the pmof-of-concept analysis through the linkage between validation and 
long-term monitoring network design. Once the model passes this validation/postaudit stage, the 
process moves to one of long-term monitoring and stewardship. In these steps, one would use the 
"fhal" refined and validated model and prdct the output of pzgulatory interst as well as the 
output that will drive the long-term monitoring network design. More discussion about the link 
between the model validation strategy proposed here and the UGTA strategy is presented in 
Section 6.1. 

4.3 Performance Measures, Uncertainty and Acceptance Criteria 

The performance measure or the model-produced quantity of interest should be related to 
a quantity of regulatory interest (Davis et al., 1991). However, regulatory interest in the context 
of performance assessment models and models of nuclear testing sites usually spans a time scale 
on the order of 1,000s of years and spatial scales on the order of kilometers. Since experimental 
analysis designed for mode1 validation studies cannot be extended to these scales, the validation 
studies must rely on indirect measures for testing the model prediction. This issue raises an 
important question regarding the extrapolation of model "VaIiditf' across multiple time scales. 
That is, can a model validated (or being declared as not invalid) at certain time (e.g., 50 years 
after contaminant release) be assumed valid over a time scale of 1,000 years? This issue 
advocates the importance of long-term monitoring to make sure that model predictions continue 
to be not invalid as time progresses, which builds increased confidence in model predictions. 



While goundwater models cannot be tested over the regulatory scales of interest, certain 
site-specific factors can be evaluated to gain confidence in using the model to predict flow and 
t m ~ p o r t  over these scales. The site-specific data should be used not only as model input data 
(e.g., hydraulic conductivity), but also as model testing or validation data (e.g., hydraulic heads). 
Also, a considerable effort should be devoted to justifying the mode1 assumptions as mentioned 
earlier. Assumptions that cannot be tested or justified by site-specific information have to be 
tested according to the expert judgment and the acceptance by the scientific community. 
Anderson and Woessner (1992af also state that a subjective judgment (based on hydrogeologic 
expertise and evidence) is always required in deciding whether the mismatch between model 
predictions and field data is tolerable and that these judgments should be tied to the regulatory 
purpose of the modeling effort. 

Tsang (1987) highlights the importance of the choice of the measurable quantities lhat are 
to be used for validation purposes, as there are measurable quantities that are almost impossible 
to use for model validation (e.g.. point and instantaneous concentration data). The averaged 
solute concentration over a large region and over a period of time is a more relevant quantity for 
certain purposes such as determining the effectiveness of geological isolation of nuclear or toxic 
waste (Tsang, 1987). However, depending on the purpose of the model, this comparison may or 
may not be of importance. Also, more rigorous criteria for upscaling of point concentration or 
downscaling of model-predicted concentration should be invoked when making such 
comparisons. Again, this comparison may actually be avoided if one is to only confum where the 
plume is, or to evaluate arrival times. Furthermore, the stwhastic models provide uncertainty 
bounds around the best estimate, and field measurements that are properly upscaled can be 
compared to see whether they fall within or far beyond these uncertainty bounds. 

Most of the model components (conceptual model, mathematical model, computer code, 
and input data) contain some degree of uncertainty due to tack of perfect knowledge about the 
subsurface conditions no matter how weH the system is characterized. Furthermore, experimental 
results (e.g., field measurements) that are designed for model validation studies contain some 
errors or uncertainty. The validation tests should consider these sources of uncertainty, which 
apparently makes it difficult to ascertain whether or not the model resuits agree with the 
experimental data; the more uncertain the data are, the more difficult it is to conclude that the 
rncdel is acceptable (Davis el al., 1991). However, as mentioned before, these uncertainty effects 
should be viewed in terms of whether or not they affect the quantity of regulatory interest. In 
some cases, input uncertainty may have minor impact on the resulting regulatory quantity such 
as the size and location of the water volume having contaminant concentration exceeding a 
certain threshold (F'ohll and Mihevc 2000). These effects should therefore be carefully studied 
prior to designing the validation study. 

Davis et al. (1991) discuss some acceptance criteria when validating performance 
assessment models. To declare that a model is acceptable or adequate for a specific regulatory 
requirement, the model structure, as well as the model input data, has to be acceptable. Model 
structure should reflect how the real system behaves. All assumptions inherent in the conceptual 
model should be justified using site-specific information and field data collected for validation 
purposes. Accepting the model structure implies that the model results will exhibit a system 
behavior that is independent of the input data used. That is to say that changing the input data for 
a structu~ally accepted model only changes the output results in a quantitative sense but not in a 
qualitative sense. 



To declare that the model input is adequate one has to build confidence in the model over 
a wide range of experimental conditions. That is, by changing the conditions under which the 
laboratory or field validation experiment is performed (e.g., different flow or pumping rates), the 
model predictions can be compared to a wide range of input conditions that will help build 
confidence in model input. When changing experimental conditions and thus some portions of 
the input data for the model, the adequate model should predict the experimental results with a 
reasonable accuracy without changing other input data. If other input data are correlated to those 
changing conditions, then the model input should reflect this type of correlation to accept the 
model input and declare the model not invalid. 

5. CONSIDERATIONS AND CRITICAL ISSUES 
5.1 Reducing the Prediction Uncertainty 

Validation of predictive models should provide confidence in the uncertainty band of the 
results, within which the real outcome uill fall (Zuiderna, 1994). Understanding the impossibility 
of completely eliminating uncertainty (Gomkhovski and Nute, 1996), we should develop ways of 
making groundwater models and the decisions based on them more reliable and effective. The 
proposed plan focuses on making use of collected validation data to reduce model uncertainty 
and narmw the range of possible outcomes of stochastic numerical models. This requires 
iterative implementation of data collection, model evaluation, model refinement, and uncertainty 
reduction and is particularly important in radionuclide transport models as only small aspects of 
the transport model results can be tested. In this case, our proposed validation approach would 
focus on the non-transport elements of the model (e.g., geology, structure, and flow) and use the 
validation data to refine transport predictions and reduce their uncertainty. 

As pointed out by Anderson and Woessner (1992a), a partial validation may be achieved 
by the demonst~ation that a good modeling protocol is implemented in the modeling process and 
by a thorough assessment of model calibration and uncerkhty analysis. The use of validation 
data to reduce prediction uncertainty is thus an impoIfant step in the validation stage where 
refining the model with new data helps build increased confidence in the model. This triat-and- 
error approach together with the understanding that uncertainty cannot be completely eliminated 
represents important aspects of the validation approach and should be clearly presented to model 
sponsors and regulators for their understanding and approval. 

5.2 Diversity of Data and Evaluation Tests 

As discussed by Ababou et a!. (1992), the degree to which a single experiment (or a 
single set of field data) can validate a model depends on the subjective weights, or probability, 
assigned to that particular experiment. More validation weight can be assigned if the range of 
aspects covered by the experimental data set is broad enough that the overall character of the 
model is efficiently put to test. The field data should, therefore, be diverse and cover different 
a s p &  of the model. For example, the data should be able to test geologic aspects (e.g., the 
existence and location of contact between different geologic units), flow model aspects (e.g., 
head and gradient measurements), and transpofi or contaminant release aspects (e.g., 
concentration measurements). Since one of the purposes of the validation task, if not the most 
important one, is to see if multiple failure and far-field tmnsport of contaminants can at all take 
place, transport aspects related to some failure scenarios should be tested. 

Oreskes et al. (1994) postulate that by using as numerous and diverse confirming 
observations as possible, it is reasonable to conclude that the conceptualization embodied in the 



model is not flawed. Therefore, a diversified set of statistical tests and evaluations for the model 
will provide a structured approach for evaluating the model predictions and building confidence 
in the decisions based on these predictions. The systematic validation approach we propose here 
relis on a number of different tests and evaluation techniques that will help guide the decision 
regarding the model predictions and allow for informed and grounded discussions among the 
modelers, model sponsors and regulators. 

5.3 Submodels 

In general, if a single model is divided into two or more subrnodels, the degree of 
confidence imparted by evaluating the submodels individually will not be as great as the degree 
of confidence achieved by evaluating the submodels linked together (Eisenberg et a/., 1994). 
Therefore, it is important to perform additional tests to validate the combined submodels. Site- 
specific groundwater flow and transport models can be divided in general into three submodels 
that can be tested individually first and then combined. Figure I shows an example of the 
different submodels of a site-specific model and how they are linked to each other. The figure 
shows both the conceptual and the numerical subrnodels. 

For the first submodel, a geologic model identifying the different units and how they are 
structured together within the study domain is conceptualized. The input to the first subrnodel 
constitutes all the data types that help identify the geologic units and where they are located (e.g., 
lithologic data, geophysical logs, resistivity logs). With categorical or qualitative data and using 
geostatistical tools and conditional simulation, a discretized numerical submdel of the different 
categories or units can be obtained. Subsequently, one can use the quantitative data available 
(e.g., hydraulic testing results, packer tests, resistivity logs) to obtain the detailed heterogeneous 
structure of each individual unit in a quantitative manner. That is, the spatially varying hydraulic 
properties, namely hydraulic conductivity, can be obtained as an output of this first submodel. 

For a general site-specific model and for the special case of the CNTA model, the first 
submodel can be tested in terms of the existence and location of the different units identified in 
the conceptual geologic model. Contact between the different units is also an important aspect 
that can be tested with validation data. For the CNTA model, Pohlrnann el al. (1959, 2000) 
identify three geologic units with significant uncertainty associated with the contact between 
them. Conductivity values assigned to different layers should also be evaluated. This evaluation 
will focus on reducing uncertainty in the assigned conductivity values by utilizing head 
measurements and a conditional simulation (or inverse) approach. For example, the sequential 
self-calibration (SSC) approach (Wen et a)., 1996; G o m e z - H h d e z  et al., 1997) can be used 
for this purpose. 

The second major submodel for a general site-specific groundwater model is the flow 
submodel, where the output of submodel (1) is used as input. A conceptual flow model is then 
formulated and used in conjunction with this input and boundary conditions and assumptions to 
derive the numerical flow model and solve the flow equations. This results in identifpng the 
flow pattern in the simulation domain, which is represented by discretized head values and 
velocity components. This velocity distribution is the output of submodel (2) and is used as input 
to submodel (3). 
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Figure 1 .  A schematic representation of a general site-specific groundwater flow and transport 
model showing the conceptual and numerical models and the three main submodels 
linked together. 



The flow pattern at CNTA (and at many other field sites) is fairly complicated (see 
Pohlrnann et ah, 2000) and it is crucial to verify the directions of the vertical and lateral head 
p h e n t s ,  especially in the vicinity of the contaminant source. Multiple head measurements at 
different levels can be obtained h m  a single borehole, and these data will be crucial to testing 
the flow model and its underlying input data and boundary conditions. In addition to testing the 
predicted heads themselves, the head data will be used to reduce the heterogeneity uncertainty by 
using an inverse method such as the SSC approach mentioned above. 

In general, the last submodel in a site-specific study is the transport model. The 
conceptual transport model is identified by determining the source size and location, the release 
scenarios, and the transport processes encountered during the migration of contaminants. Added 
to the velocity pattern and boundary conditions, this conceptual model gives rise to the numerical 
transport model where the transport equations are formulated and solved for the output of 
concern. This solution yields temporal mass flux breakthrough curves a1 certain boundaries, 
spatial-temporal distribution of contaminant concentrations, or contaminant boundaries. Usually, 
these latter outputs are the target of the entire modeling process when groundwater 
contamination is the major regulatory concern. 

For the CNTA transport model, the release of radionuclides from the test cavity and the 
movement away h m  it are just starting (based on a cavity infill time of 30 years for a test 
conducted in 1968). An important focus of validation of the transport aspects should be verifying 
whether there are any fast migration channels or failure scenarios that may have been overlooked 
and would thus iead to migration distances greater than the model predictions. Measurement of 
tritium concentrations in wells located sufficiently far from the cavity (e.g., beyond the fiacituing 
radius to separate the possibility of fast migration pathways from prompt injection issues) will be 
important to test the adequacy of the transport model and whether or not the model (within its 
uncertainty bounds) has covered all the critical transport issues. 

After considering the different components and tests described above and linking the 
calibration analysis to the validation analysis, we arrive at the stage of evaluating the different 
submodels linked together. The flow of information between the three submodels provides a 
natural linkage that will enable collective evaluation of the entire model to be conducted in 
parallel with the individual submodel evaluations. 

5.4 Subjective Versus Objective Judgment 

Calculated and observed data for both the calibration and validation processes most often 
are presented graphically, with a subjective interpretation of the quality of the match (Flavelle, 
1592). It is generally preferable, however, to use some form of objective analysis to perform 
model calibration and validation. The objective quality of model calibration is usually described 
by a goodness-of-fit parameter, which reflects how well the model results match the observed 
calibration data The goodness-of-fit is usually used to optimize the calibration of the computer 
model's adjustable parameters and to serve as a measure by which to compare alternate models. 
This is an inverse problem, for which the main problem is the non-uniqueness of the solution that 
gives rise to obtaining different parameter values that yield solutions with similar accuracies 
(e.g., Poeter and Hill, 1997; Hill et aL, 1998; D'Agnese et al., 1999). The most common 
goodness-of-fit parameter appears to be some form of weighted root-mean-square error, with the 
error describing the difference between calculated and measured values. UnfortunateIy, while 
quantitative evaluation of the quality of model calibration is becoming more common, the 



complexity of some of these evaluations makes them unattractive for general use by regulators 
and decision-makers (FlavelIe, 1992). It is, therefore, more appealing to invoke simple goodness- 
of-fit tests and describe the calibration and validation processes in an objective manner. The 
validation approach proposed here relies heavily on objective evaluations and a number of 
statistical measures and tests for evaluating different aspects of the mdei. 

A common form of objective analysis for calibrating and validating simulation models is 
statistical hypothesis testing (Balci and Sargent, 1981, 1982). Two types of errors can exist in 
hypothesis testing and may lead to wrong decisions if testing results are used for decision- 
making. The first type of these two is called type I error, which results from rejecting a 
hypothesis while in fact it is a correct one (e.g., rejecting the validity of a valid model). The 
second is referred to as type I1 error, which results kom accepting a false hypothesis (e.g., 
accepting the validity of an invalid model). Despite these errors, we propose to use this form of 
objective analysis in addition to some other goodness-of-fit tests to evaluate the quality of the 
comparison between model predictions and measurements for both calibration and validation. 
More background details are given in the Appendices regarding goodness-of- fi t measures and 
hypothesis testing. 

McCombie and McKinley (1993) argue that the decision about how much effort must go 
into the validation process before the model can be considered to be valid is necessarily 
subjective and very dependent on the complexity of the system and on the objective of using the 
model in the first ptace. They further recommend that the subjective aspect of assessing if a 
model is good enough be inciuded in the term "validation." This argument and the above 
discussion highlight the fact that neither purely objective judgment nor purely subjective 
judgment can be used in the vaIidation process. In other words, each of the objective and 
subjective judgment components is a necessary component for the model validation process, but 
is not a suficient tool. They complement each other, and model builders, model users, and 
regulators should come to an agreement that objective judgment will always be complemented 
with subjective judgment and hydrogeologic expertise. 

5 3  Validation Cost and Coddeuce in the Model 

The cost of obtaining data and performing the analysis far model validation should be 
considered in designing any validation plan. As shown in Figure 2, adapted from Sargent (1990), 
there is a limit beyond which increased investment in model validation efforts (both data 
collection and analysis) does not significantly increase confidence in the model and adds little 
value to the end user (Sargent, 1990). Therefore, the model validation process requires consent 
between concerned parties regarding the level of confidence required for the mode1 to be 
validated, keeping an eye on the cost that is needed to achieve this confidence level. The 
proposed validation approach discussed in the next section has a number of decision points, for 
which the cost of the data collection and analysis comes into play in making these decisions. 



Figure 2. The change in model value and in the cost of investing in model development and 
validation as a function of the desired confidence level in the model (adapted from 
Sargent, 1990). 

6. PROPOSED VALIDATION APPROACH 
6.1 General 

The effmtiveness of a validation strategy, i.e., its ability to discriminate W e e n  good 
and bad model assumptions, depends on the type of available data and how the data are used to 
challenge these assumptions (Mroczkowski et ab, 1997). These authors argue that validation 
using multi-response data is a considerably more powerful strategy than traditional split-sample 
testing (where a record of historical data is split into calibration and validation samples). They, 
however, base their argument on the validation of conceptual ~atchInent models, where large 
historical records exist for the parameters studied. One would expect that the use of multi- 
response data would also be much more powerful in validating a subsurfice flow and tramport 
model than using a single type of response data. Our proposed approach to model validation 
relies on using both multi-response data and diverse statistical tests and analyses to evaluate 
model performance. By doing so, one can build confidence in the model predictions and guide 
the field activities for collecting the dataneeded for the long-term monitoring of the site. 



To determine the accuracy of the model and its adequacy, one should consider the types 
of validation tests, the number of validation tests, the degree of agreement between model and 
the validation tests and the conformity between model descriptions and site-specific information 
(Davis er ab, 1991). These authors emphasize the necessity for rigorous development of the 
validation process and the importance of providing regulators with validation information that is 
as inclusive as possible and follows a logical systematic approach. The approach we propose 
here relies on numerous validation tests and evaluations and follous a systematic step-by-step 
approach as will be discussed in the next section. This systematic approach is particularly crucial 
when it comes to validating stochastic numerical models that rely on ,Monte Carlo simulation 
techniques, where multiple realizations within this stochastic h e w o r k  need to be analyzed and 
evaluated in a systematic manner. 

A unique aspect of the CNTA validation plan is that it is the first attempt to validate a 
stochastic model that explicitly accounts for spatial variability in conductivity and parametric 
uncertainty. The literature review and the discussions presented in Hassan (2002) and briefly 
summarized in section 3 make it clear that even the simplest deterministic subsurface model is 
very difficult to evaluate. The proposed plan accounts for the stmhastic nature of the model and 
attempts to reduce the realm of possibilities given by the large number of realizations considered 
in the Monte Carlo analysis. 

As indicated in the previous sections, there are currently no algorithms or procedures 
available to identify specific validation techniques or statistical tests that can be used in a 
complete manner in the validation process. In addition to the data scarcity and other challenges 
facing model validation, the CNTA transport model indicates that the nuclear test cavity infill is 
about to be complete, which means that transport migration away from the test cavity has not 
begun (Pohlrnann et al., 2000). Despite these challenges, we need to build confidence that 
model-based decisions will not result in unacceptable risks to present or future populations or in 
degradation of the natural envimment (Konikow and Bredehoeft, 1992). Building confidence in 
the models used to support closure of sites is the requirement for validation; developing a 
validation process that allows regulatory closure of sites with significant groundwater 
contamination should, therefore, be the ultimate goal of any validation strategy. We propose a 
systematic appmach for validating the CNTA groundwater model in a manner consistent with 
the ultimate use of the model and the regulatory requirements. The rigor of the proposed 
approach stems h m  its simplicity, comprehensiveness, and coverage of many aspects of the 
model rather than its mathematical complexity. 

Many of the tests that we propose to use in the validation approach and their underlying 
principles are familiar. The power of these tests and the power of the integrated validation 
approach stem not from their innovation but from their rigor and completeness. We are not 
developing new theories or statistical analyses, but rather putting together a number of available 
tools in an integrated manner to evaluate groundwater models that are used for decision making. 
Together, these tests and the proposed systematic validation approach provide a structured 
approach for analyzing all the key issues and components of a site-specific groundwater model in 
the hope of building confidence in the decisions based on the model predictions. Individual 
decisions throughout the validation stage will still be difficult, often requiling subjective 
judgment and some trade-offs, but using the structured, systematic validation approach we 
propose here will help guide the decision and make the debate among involved parties more 
rational. 



Our philosophy in developing and advocating this validation approach relies on a 
forward-looking perspective. That is, by carrying the groundwater modeling process one step 
further beyond the small iterative loop of characterization-calibration-modeling-prediction and 
back to characterization to reduce uncertainty, one can learn a great deal about the site and the 
model together. Unfortunately, no matter how many times the iterative process is repeated, there 
will always be a level of uncertainty about the results of these studies and whether they represent 
reality or not. Without a way to exit the loop of characterization, conceptualization, calibration, 
modeling, and back to characterization, resources may be allocated to efforts and studies that do 
not ultimately resolve the problem of concern. The flow chart shown in Figure 3 schematically 
represents this loop (thin-lined loop) and proposes a logical way to exit this loop. This occurs 
through the groundwater flow and contaminant transport validation process (the outer, bold-lined 
loop in Figure 3), which develops a systematic method of determining when adequate confidence 
in the groundwater model has been achieved and long-term monitoring should begin. It is 
possible, of course, that model deficiencies can drive the process back to the inner loop of 
characterization, but this would only occur aRer analysis of validation and monitoring results 
over time. 

Figure 3 also shows the linkage between the proposed strategy and the ten-step UGTA 
model validation strategy. Steps 1 through 9 of the UGTA model validation strategy belong to 
the development stage that is represented in the figure by the path &om characterization to the 
results circles within the closed, thin-tined Imp. Step 10 in the UGTA strategy (the postaudit) is 
highlighted by the bold lines in Figure 3, and it represents the model validation conceptualization 
as perceived in this study. It is important to notice that the five-year proof-of-concept monitoring 
network development that is required in the FFACO (2000) can start once the development loop 
is exited and can be performed simultaneously with the model validation analyses, monitoring 
network development and the postaudit. As stated in the FFACO (2000), measurement of field 
parameters through this pmof-of-wncept monitoring network will be used to demonstrate that 
the mcdel is capable of making reasonable predictions that fall within an acceptable level of 
confidence. This is exactly what the closed, bold-lined loop in Figure 3 is designed to provide. 
When the initial monitoring network is installed, data collected, and evaluation tests performed 
for evaluating and validaling the model, the question will arise as to how the model predictions 
compare to the collected field measurements. If the results indicate major model deficiencies, the 
pmcess wiH be driven back to UGTA step 2 (the lefbnost bold, upward arrow in Figure 3). Steps 
2 through 9 of the UGTA strategy will be repeated and this repetition is considered as part of the 
model postaudit or model validation stage. If our confidence-building, hld-lined loop indicates 
reasonable model performance, but more confidence building is still needed, the process is 
driven back to the simultaneous stages of selecting validation targets and developing (or 
augmenting) the proof-of-concept monitoring network. Here, new well locations may need to be 
determined to augment the initial monitoring network. This will provide additional wells for 
growing the five-year proof-of-concept monitoring network, and this iterative process continues 
until sufficient confidence is built in the model formulation and predictions. 

Once UGTA step 10 (model postaudit), the proof-of-concept stage, and confidence- 
building loop (model validation pmcess) have been completed successfully and the model is 
deemed validated, the design will start on the long-term monitoring network that will augment 
existing wells so as to provide sufficient surveillance for the site. Using the long-term monitoring 
data to re-evaluate the model over time is considered as a continuous model validation and 
postaudit process and is necessary for the long-time period of concern at these nuclear testing 
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Figure3. A schematic representation of the characterization-calibration-modeling- 
characterization loop (thin-lined loop) and the way to evaluate the process to either 
exit the loop and start long-term monitoring or continue for better characterization 
and modeling. Also shown is how this process relates to the UGTA ten-step model 
validation strategy as outlined in Appendix VI of the FFACO (2000). 



sites. Again, the how-to steps related to the UGTA model postaudit stage and the link to the 
proof-of-concept monitoring are not mentioned in any quantitative manner in FFACO (2000). 
What is provided in Figure 4 and discussed in Section 6.2 is a detailed approach for performing 
this process in the case of stochastic numerical models that rely on Monte Carlo simulations, 
which is the case for CNTA and other UGTA and offsites studies. 

It is important to note that previous studies that dealt with groundwater model validation 
(e.g., Tsang, 1991) focused only on the small, iterative loop (thin-lind loop) shown in Figure 3. 
For example, Tsang (1991, Table 1) asks the question of whether the "evaluation of the results" 
indicates that uncertainty is too large or results with estimated uncertainty are good enough. This 
is essentially equivalent to the data decision analysis step in the thin-lined loop in Figure 3. Also, 
previous studies did not explicitly consider the stochastic nature in a Monte Carlo fashion as is 
considered here for the CNTA stochastic model. Furthermore, the quantitative aspects were 
absent in previous studies, whereas the proposed appmach contains many quantitative tools such 
as goodness-of-fit measures, hypothesis testing, and regression analysis in evaluating model 
results. 

Going forward with the validation analpis will allow one to say 'baybe" the model is 
good enough, while staying in the small iterative thin-lined loop of Figure 3 wilt not allow any 
judgment regarding the model. Tkere will never be enough facts or data to eliminate all the 
uncettainty or to make a decision based solely on those facts. It is, therefore, better to move 
forward in the face of uncertainty and make decisions regarding the model conformity with 
regulatory requirements, and then evaluate these decisions periodically over time. 

6.2 Proposed Step-by-step Procedure for Model Validation 

To start, the steps to carry out the proposed model validation and the refinement of the 
model predictions based on the collected validation data are listed. Detailed theoretical 
background and descriptions of the different steps are presented in the Appendices. The proposed 
steps, shown in the flow chart of Figure 4, are as follows: 

Step 1: Identify the data needed for validation, the number and location of the wells, and 
the type of laboratory or field experiments needed. The wet1 locations can be determined based 
on the existing model and should favor locations likely to encounter fast migration pathways. 
This step will mark the beginning of the five-year proof-of-concept monitoring network 
development stage. The well locations will be determined using a monitoring network design 
appmach to provide measurements that will be used to show whether the model is capable of 
making reasonable predictions that fall within an acceptable level of confidence. There are 
additional factors guiding well location, which are determind by the site conditions and the 
nature of contamination. For example, for the CNTA model, the first consideration is that wells 
should be located far enough outside the fractured radius of the zone impacted by the nuclear test 
to avoid confusing prompt injection of radionuclides from the blast with radionuclide migration. 
Second, the we115 should be located around the cavity in such orientation to obtain the most 
benefit fkm them in validating the model and refining it. The layout of the wells should be 
designed to enable a verification of lateral and vertical head merits and flow directions around 
the cavity area. Other factors such as safety issues associated with radioactive contamination and 
the cost of drilling and collecting data have to be considered. Sequencing of data collection is also 
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Figure 4. A flow chart showing the proposed validation approach and the associated iterative 
refinement loops. 



important. Though it may be more practical and cost-efficient to drill the wells simultaneously, 
drilling one well at a time and collecting all possible data h m  it and testing the model to 
determine the next field activity may be a better approach. Again, these choices depend on the 
problem at hand and need a consensus among model developers and model users. 

S t e ~  2: Carry out the fieldwork to install the wells and obtain the largest amount of data 
possible from the wells. The data should include geophysical logging, resistivity logs, head 
measurements, concentrations (e.g., checking for tritium), and any other information (e.g., 
temperature logs, conductivity measurements) that could be used to test the model structure, 
input, or output. The philosophy here is that the major portion of cost in the case of deep 
groundwater contamination (e.g., nuclear testing sites) is incurred during drilling the wells. 
Therefore, it makes a good investment to coilect as much data as possible from these wells, 
because the extra data collection cost (in the shorl-run) is going to be marginal in comparison to 
the drilling cost. 

S t e ~  3: Evaluate the calibration accuracy for each individual realization using different 
goodness-of-fit measures in addition to the generalized likelihood uncertainty estimator (GLUE) 
(Freer et al., 1996; Franks and Beven, 1997; Fohlmann et al., 2001). This assumes that the 
original model calibration was qualitative in nature (which is a common case) and was done to 
minimize the deviation W e e n  model prediction and observed calibration data based mainly on 
visual inspection. A more detailed discussion of the GLUE analysis is presented in Appendix A. 
Other tools such as linear regression analysis, goodness-of-fit tests and hypothesis testing can be 
d to provide additional objective means to evaluate the relative strength of each realization in 
terms of reproducing the field calibration data. That relative strength wili be linked later to the 
ability of individual realizations to match the validation data. Appendix B presents some 
description and discussion of goodness-of-fit measures and Appendix C reviews some linear 
regression analyses and benefits in model calibration and validation. Also, the use of hypothesis 
testing for model evaluation is briefly described in Appendix D. 

S t e ~  4: Perform the different validation tests that will help evaluate the different 
submodels and components of the model. A pmmising stochastic validation approach was 
proposed by Luis and McLaughlin (1992) and was applied to a two-dimensional, deterministic, 
unsaturated flow model for predicting moisture movement during a field experiment carried out 
near Las Cruces, New Mexico. A detailed description of this approach is summarized from Luis 
and McLaughlin (1992) and presented in Appendix E. This approach can be adapted and used to 
test the flow model output (heads) under saturated conditions. Other objective tests (e.g., 
goodness-of-fit tests) can be used for the heads to complement this stochastic approach that is 
based on hypothesis testing. Similar tests will be performed to test model structure and or input 
depending on the type of data to be obtained in the field. Some data will be used to check the 
occurrence or lack thereof of failure scenarios (e.g., at CNTA one needs to check if tritium exists 
much farther from the cavity than is predicted by any realization of the stochastic model). The 
philosophy here is to test each individual realization with as many diverse tests (in terns of the 
statistical nature of the test and the tested aspect of the model) as possible and have a quantitative 
measure of the adequacy of each realization in capturing the main features of the modeled 
system. 

Steo 5: Link the results of the calibration accuracy evaluations and the validation tests for 
all realizations and sort the realizations in terms of their adequacy and closeness to the field data 
A subjective element may be invoked in this sorting based on expert judgments and 



hydrogeologic understanding. The objective here is to filter out the realizations that show a 
major deviation or inadequacy in many of the tested aspects and focus on those that "passed" the 
majority of the tests and evaluations. By doing so, the range of output uncertainty is reduced and 
the subsequent effort can be focused on the most representative realizationslscenarios. To 
continue reducing the uncertainty level, a refinement of the conductivity distribution can be 
made using the SSC method mentioned earlier and described in Appendix F. In this method, 
head (and concentration) measurements can be used to condition the generation of the 
conductivity fieid in such a way that the uncertainty in the conductivity heterogeneity pattern 
around each measurement location is reduced. This updating of the conductivity distribution can 
be done for each of the original conductivity realizations that were retained in the analysis. 

Stop The results of step 5 will determine the forward path and guide the decision as to 
whether there is a sufficient number of realizations that attained a satisfactory high score (thus 
building confidence in the original model) and are considered sufficient for further analysis or 
whether this number of realizations is not suficient in comparison 10 the realizalions with low 
scores indicating that the original model needs major revisions. 

6a. If the number of realizations with low scores is very large compared to the total 
number of model realizations, it is an indication that the model has a major deficiency or 
conceptual problem or that the input is not correct. In this case, the conceptual model should be 
revised and model structure updated basad on1 y on the original catibration data if possible. This 
means that the validation data should not be used and in essence should be forgotten. This is 
done to avoid new validation data collection at this stage when the previous analyses indicate 
that the model is indequate as is. If this is difficult, however, a compromise solution could be to 
split the validation data set and use part of it in the model refinement process and save the other 
part for the next round of validation tests and analyses. The possibility also exists that after the 
model is refined, new wells at different locations will be needed (e.g., if the analysis indicates a 
shift in the flow direction such that the initial monitoring network will not be optimally located 
for collecting the relevmt data). a). this case, the five-year prmf-of-concept monitoring network 
will be modified and used for the new round of validation data collection. This iterative process, 
when eventually completed, will in essence provide the evidence that the monitoring network is 
doing what it is supposed to do, which is the main purpose of the five-year prwf-of-concept 
stage of the entire process. 

6b. If the number of realizations with high scores is found sufficient, this indicates that 
the model does not have any major deficiencies or conceptual problems and one can move 
forward to step number 7. 

Sten 7: Once the rightmost loop in Figure 4 is completed successfully and a sufficient 
number of the model realizations show acceptable performance (this is judgmental and should be 
based on the hydrologic expertise and judgment of the researchers involved), the model sponsors 
and regulators in collaboration with the model developers have to answer the last question in 
Figure 4. This question will determine whether the validation results meet the regulatory 
objectives or not. Anderson and Woessner (1992a) suggested that regulators should be content 
with some degree of partial validation and should M e r  shift the focus from demands for 
validation to demands for g o d  modeling protocol that includes a complete description of model 
design, a thorough assessment of model calibration and an uncertainty analysis. It is important to 
recognize that the data collected represent both validation and monitoring data. The five-year 
proof-of-concept monitoring network development will essentially occur at the beginning of the 



validation process (postaudit in FFACO's terms) and the data collected will be used to 
"demonstrate that the model is capable of making reasonable predictions that fall within an 
acceptable level of confidence." Thus the question posed at this stage is whether the designed 
five-year proo f-of-concept monitoring network provides sufficient surveilIance for the site and 
whether the collected data and the resulting evaluation tests provide sufficient evidence about the 
fidelity of the model. 

7% If the answer to the question posed is no and there is a need to collect more data for 
more confidence building in the model or that the monitoring network needs to be modified, then 
the left-hand-side loop in Figure 4 gives rise to a new7 iteration of model refinement, new well 
placement, data collection and re-evaluation. In this case, all available data become calibration 
data and new data will need to be collected for validation, probably from new wells. Steps 1 to 6 
are repeated with the data to be coltected determined based on the analysis of the refind model. 
It is thus better to benefit from the vatidation data and refine the model using the representative 
realizations before proceeding to the new round of data collection. The new wells for this round 
should be selected to serve two purposes: 1) sources for the new vaiidation data and 2) location 
targets for the long-term monitoring of the site. 

7b. If the answer to the question posed is yes, validation is deemed sufficient and the 
model is considered adequate or robust and we then proceed to step 8. 

Step 8: Design a long-term monitoring plan. This includes setting and clarifying the 
objectives of the monitoring, designing the monitoring networks, determining the frequency of 
sampling, where, when and what to sample, etc. 

The above steps outline the general approach we propose for validating stochastic 
numerical groundwater models that rely on Monte Carlo simulations. Figure 4 shows a flow 
chart that summarizes these steps and the iterative process that needs to be implemented for 
building confidence in groundwater predictive models and moving toward the long-term 
monitoring and closure of contaminated sites. The approach is general in mture and the 
application to the CNTA model will be the first attempt to validate a stochastic model for a 
nuclm testing site to the best of our knowledge. The iterative nature of the proposed approach is 
one of i ts greatest strength. Numerical groundwater models, and in particular stochastic models, 
are very complex and modifying or changing any aspeEt of the model may produce unanticipated 
consequences in a different aspect of the model. To get the best outcome of the validation 
process, one needs to both consider the different details separately and take the broader view of 
the entire model while working step-by-step through the different decisions and trade-offs. 

It can be seen and expected that the process of validating a site-specific groundwater 
model is not an easy one. Throughout the structured process described above, we may wonder 
whether there is any way to h o w  and confirm that we are on the righi track. It is our belief that 
the way to this confirmation is the cumulative howledge gained h m  the different stages of the 
validation process. That is, a set of independent tests and evaluations will provide a great 
knowledge about the model performance and their results will provide some incremental, but 
additive, pieces of information that will be of superior importance. While there are no guarantees 
of success (attaining a conclusive outcome about model performance), the combined presence of 
these different results and evaluations sharply improves the odds that one can make a good 
decision about the model performance. 



As mentioned earlier, an attempt is made during the development of this approach to 
honor most of the critical issues raised in previous groundwater model validation studies and 
discussions. For example, Konikow (1986) states that models should be considered as dynamic 
representations of nature, subject to further refinements and improvements. As new data become 
available (e.g., through new wells), model predictions can be evaluated, validated or invalidated, 
and then modified if necessary. This dynamic loop is considered in the proposed validation 
approach outlined above. Also, Tsang (1989, 1991) argues that it is important to validate every 
step of the modeling process in an iterative manner for models that are used for long-term 
predictions with emphasis on adding an element to the modeling process that can be used to 
suggest what further measurements are needed to improve the confidence level in the model 
predictions. Along similar lines, Anderson and Woessner (1992a) state that conceptual models 
need periodic improvements through data collection and a trial-and-error process of evaluation 
over many years. 

For completeness, we present all the necessary background regarding the proposed tests 
and techniques in the Appendices. This background information is simply compiled from the 
different studies cited in the Appendices and is aimed at clarifying the proposed approach and 
summarizing the necessary tools for this approach in one document. It should be mentiond, 
however, that these tools are just examples of many statistical tools and techniques that can be 
used to achieve the same goals and meet the same objectives. Examples are given here in the 
hope that other techniques and approaches are developed that will enhance the proposed 
validation approach and make it more practical and appealing to model sponsors and regulators. 

7. CONCLUDING REMARKS 

The challenge of validating numerical models, especially subsurface models, arises not 
only from the technical and scientific difficulty, but also from the lack of widely accepted 
definition of the term itself and the purpose of the process of validation. This report is an attempt 
to summarize the different validation perspectives and definitions, to analyze their merits, and to 
propose a model validation plan for evaluating the CNTA model. Important definitions and the 
distinctions that have to be made when dealing with the terms "calibration," "verification," and 
"validation" are highlighted. A review is presented of studies that deal with groundwater model 
validation and pmpose certain validation strategies. Common to most, if not all, of these studies 
is the fact that no quantitativeobjective tools were provided in an integrated manner in any of the 
proposed approaches, making them difficult to adapt and use in different situations. It is also 
common among these studies that the general consensus of the hydmgeologic community is that 
absolute validity (accurate or exact representation of reality) is not even a theoretical possibility 
and is definitely not a regulatory requirement. Confidence building in the modeling process and 
in the subsequent evaluation and validation procedure is viewed as the best way to achieve 
model validation objectives and acquire acceptance of the regulators and the public. 

Building on this review, a groundwater model validation strategy should take into 
account a number of impomt  issues that were recognized as being important to the process in 
many of the reviewed studies. These issues include reducing prediction uncertainty, diversity of 
data and evaluation tests, relying on objective measures whenever possible and also capitalizing 
on subjective judgment and hydrogeologic insights, testing the different submodels individually 
and in connection to one another, and recognizing that the cost element of the validation process 
will play a significant role in making many of the decisions throughout the process. Considering 
these issues and the fact that the confidence building process in model prediction is a long-term 



and iterative process, a systematic approach for the general case of a stochastic numerical model 
has been developed and is proposed for the CNTA model evaluation. One of the main outcomes 
of this study is an integrated validation approach that relies on an iterative calibration-modeling- 
monitoring-evaluation-refinement cycle, which would eventually increase confidence in CNTA 
model predictions and reduce the uncertainty level associated with these predictions. The 
methodology will be fully developed, tested, and enhanced during the implementation and 
application to the CNTA groundwater flow and transport model. 

Opponents of the use of the t m  "model validation" postulate that the term is misleading 
to the public because it conveys a comotation of correctness that cannot be proven true. We 
disagree with this paradigm for a number of reasons. First, is the fact that whether the pubIic 
agrees or not and whether the hydrogeologic community agrees or not, models are being used for 
regulatory decisions at a wide variety of sites, and many of these regulations call for some form 
of validation of the models. Therefore, instead of driving the process and studies to a halt, it is 
better to devote efforts to developing the tools and techniques that can be used lor assessing the 
model results, and revising decisions based on them if needed. This would at least allow for 
atlocating resources to achieve better understanding of the entire monitoring and validation 
process. Second, the term "model validation" requires as much effort to explain the underlying 
logic to the public as the t m s  "calibration," "history matching," and "benchmarking." To a 
technician or a mechanic who is familiar with calibrating digital scales or calipers, the term 
"calibration" alludes to high accuracy and correctness. Therefore, the calibration term can also 
be misleading to the public unless the underlying defmitions and logic are clearly explained and 
simplified. 

Third, Lee et al. (1'36) identified significant misuses of groundwater models in 20 
reviewed modeling reports that were used to make regulatory decisions. A well-established 
model validation procedure or process with trigger mechanisms for revisiting the mode! 
conceptualization if field data indicate deficiencies may have averted some of these misuses. 
Fourth, statements such as "groundwater mde l s  cannot be validated" may lead to a laid-back 
attitude on the part of modelers, hydrogeologists, or even regulatory agencies when it comes to 
testing and evaluating their models. 

Finally, an analogy to the development and use of stochastic modeling can be made to 
support the above points. Dagan (2002) indicates that stochastic modeling of subsurface flow and 
transport has reached an advanced stage and has been applied to aquifer characterization, to the 
design and analysis of elaborate field experiments, and to a few major projects. So, the tools 
have been advanced and thoroughly developed despite the claims of many opponents who 
described the stochastic approaches as GIGO (garbage in garbage out). The lesson that can be 
learned here is that tools and techniques need to be developed and the focus needs to be shifted 
from what we call the process to how we best develop and shape the process of model validation 
in the hope that better decision making can be achieved. 
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Appendices: Background and Theoretical Concepts 
Appendix A: Generalized Likelihood Uncertainty Estimate Analysis 

To honor site-specific data during calibration and subsequent modeling, the generalized 
likelihood uncertainty estimator (GLUE) algorithm can be used (Freer et ah,  1996; Franks and 
Beven, 1997; Pohlrnann et a]., 2001). The GLUE procedure is an extension of Monte Carlo 
random sampling to incorporate the goodness-of-fit of each simulation. A likelihood measure is 
an evaluation of the quantitative goodness-of-fit. For example, the likelihood estimator for the 
solution of the flow equations can be defined as 

where 

a n d ~ ( q @ )  is the likelihood of the vector of outputs, Y,  knowing O , the vector oErandom inputs; 

4 is the simulated head at the point j; hl is the observd head at that point; and M is a 

likelihood shape factor. Although the choice of the M factor is subjective, its value defines its 
relative hc t ion .  As M approaches zem, liketihood approaches unity and each simulation has 
equal weight, as is the case with traditional Monte Carlo analysis. As M approaches infinity, 
simulations with the lowest sum of squared errors (the simulations that best fit the field data) 
receive essentially all of the weight, which is analogous to an inverse solution. The likelihood 
weights that are calculated for each realization based on Eq. (Al) can be used in subsequent 
modeling to give more weight to those realizations that best fit the field data during the 
calibration process. Also, these weights can be used later in the validation stage to compare the 
performance of individual realizations when acquiring new field data for vaiidation analysis. 

As was shown in Figure 3, one of the steps in the proposed validation approach is to 
quantitatively evaluate the calibration goodness-of-fit for each realization using the GLUE 
analysis. This analysis will give each realization a relative weight indicating its strength in 
matching the calibration targets. These weights are the fmt quantitative measures for different 
realizations, which can later be combined with and compared to the different evaluations and 
tests performed using the validation data. 



Appendi B: Goodness-of-Fit Measures1 

Legates and McCabe (1999) provide an evaluation of the common goodness-of-fit 
measures that are used in hydrologic and hydroclimatic model validation. They argue that 
correlation and correlation-based measures (e.g., coefficient of determination a e  
oversensitive to extreme values or outliers and insensitive to additive and proportional 
differences between model predictions and observations. They conclude that these measures 
should not be used to assess goodness-of-fit of a hydrologic model and that additional 
evaluations such as summary statistics and absolute error measures should supplement model 
evaluation tools. They also present useful alternative goodness-of-fit and relative error measures 
(e.g., coeficient of efficiency, index of agreement) that overcome many of the limitations of 
correlation-based measures. The remainder of this Appendix is a summary of the preentation of 
Legates and McCabe (1999) highlighting the definitions and differences between different 
measures as presented in the context of model evaluation. 

The coefficient of determination describes the proportion of the total variance in the 
observed data that can be explained by the model and ranges from 0.0 to 1.0, with higher values 
indicating better agreement 

where the overbar denotes the mean, P denotes predicted variable, 0 indicates observed values 
and N is the number of available pairs of predicted versus measured values. It can be seen that if 
Pi = (AOi + 3) for any non-zero value of A and any value of 3, then = 1.0. Thus 2 is 
insensitive to additive md proportional differences between the model predictions and 
observations. It is also more sensitive to outliers than to observations near the mean. 

The coefficient of efficiency, which ranges h m  minus infinity to 1.0, is defined as 
(Legah and McCabe, 1999) 

The coefficient of efficiency represents an improvement over the coefficient of 
determination for model evaluation purposes in that it is sensitive to differences in the observed 
and model-simulated means and variances; that is, if Pi = (AOi + B), then E decreases as A and B 
vary h m  1.0 and 0.0, respectively. Because of the squared differences, however, E is overly 
sensitive to extreme values, as is R ~ .  



B 3  Index ofAgreement d 

The index of agreement, d, was developed to overcome the insensitivity of correlation- 
based measures to additive and proportional differences between observations and model 
simulations. It is expressed as (Willmott, 198 1) 

The index of agreement varies from 0.0 to 1.0 and represents the ratio between the mean 
square error and the "potential error" (PE), multiplied by Nand then subtracted from unity. The 
potential error represents the largest value that (0, - c-)'can attain for each observed-simulated 
pair (Legates and McCabe, 1999). As with E, the index of agreement, d, represents an 
improvement over R', but also is sensitive to extreme values owing to the squared differences. 

The sensitivity of R ~ ,  E and d to extreme values led to the suggestion thal a more generic 
index of agreement could be used in the form (Willmott et aL, 1985) 

where j represents an arbitrary power (i.e., a positive integer). The original index of agreement d 
given in Eq. (B3) be~omes d2 using this notation. For j = 1, the resulting index, d l ,  has the 
advantage that errors and differences are given their appropriate weighting, not inflated by their 
squared values. Similarly, the coefficient of efficiency can be adjusted as 

Legates and McCabe (1999) and Willmott (1981) argue that these dimensionless 
measures (e.g., Eland dl) should not be used exclusively. It may be necessary and appropriate to 
quantify the error in terms of the units of the variable at hand. Therefore, in addition to E and d 
measures, one has to consider absolute error measures, which include the root m a  square error 

1 " 
W S E  ==) and the mean absolute error M A E = - ~ ~ O ,  - e.1 . These additional 

N i=, 

measures describe the difference between the model simulations and observations in the units of 
the variable predicted. Legates and McCabe (1999) conclude by recommending that the 
assessment of the model performance should include at least one "goodness-of-fit" or relative 
error m e a m  (e.g., El and dt) and at least one absolute error measure (e.g., RMSE or MAE) 



with additional supporting infomation (e.g., a comparison between the observed and simulated 
mean and standard deviations). 

It should be mentioned here that the analysis of Legates and McCabe (1999) was based 
on analysis of time series models, for which large-size data sets are available to test prediction 
models. In the subsurface, however, availability of such abundant data never is (and never will 
bz) the case. Therefore, some of the gohess-of-fit measures discussed above may not be usable 
for such limited data. It is thus important not to rely on a single measure, but to use as many 
measures as possible to get a better evaluation of the model predictions. 



Appendix C: Linear Regression Analysis 

Davis and Goodrich (1990) propose examining the deviations h m  model calibration for 
trends to identify systematic errors, the existence of which would invalidate the model. Flavelle 
et ai. (1 990) perform a linear regression analysis of calculated versus measured data for both the 
calibration and the validation processes. They interpret the standard error of the regression as the 
gwdness-of-fit and the slope of the regression line as the model bias. Flavelle (1992) argues that 
this linear regression analysis and its interpretation are the initial steps for evaluating model 
validation. Fmm the perspective of making regulatory decisions based on model calculations, 
this approach has some advantages and is based on the following reasoning summarized from 
Flavelle (1 992). 

Three components can be looked at, which lead to four possibilities for the linear 
regression analysis and interpretation. The three components are the input data used in the 
model, the model ilself (all of the necessary processes, mechanisms and structures) and the 
validation or calibration data. The fmt possibility is that the three components are perfect, i.e., 
perfectly known input data (no uncertainty) are applied to a perfect model and the calculated 
results are compared to perfect observations (no uncertainty and no randomness). In this case, a 
plot of calculated versus measured data would be a perfect straight line with unit slope, zero 
intercept, perfect correlation cmfficient and no regression error (Figure C1-a, recreated based on 
Figure 1 of Flavelle (1992)). The second possibility occurs if the model is not perfect, whereas 
both input data and validatiodcalibration data are perfect. A systematic (i.e., non-random) bias 
would occur and the regression line would have a slope different from unity and/or an intercept 
different from zero (Figure C1-b recreated based on Figure 1 of Flavelte (1992)). The data points 
may not be collinear, so the correlation coefficient may be less than one. The third possibility 
occurs when the input data are uncertain, andtor when the observations are uncertain or have a 
random component. In this case, the results from a perfect model would have a regression line 
with a unit slope but with some data scatter about the line (Figure C1-c). This data scatter is 
measured by the standard error of the regressioi~ which is used to determine the confidence 
interval about the regression line. Finally, if the observed or input data are uncertain and the 
model is not perfect, the regression line will not have a unit slope andtor intercept of zero, and 
there will be data scatter about the regression line (Figure C 14) .  

Following this reasoning, a linear regression of calculated against measured data provides 
an iniiial method to evaluate empirically the quality of the data fit. Bias in the model and 
uncertainty in the input and measured data would be expected to affect both the slope of the 
regression line and the standard error of the regression. There are several techniques for fitting a 
straight line through x, y data using regression analysis. The most common regression analysis 
for predictive purposes (and the most common regression analysis in general) is the Ordinary 
Least Squares (OLS) regression of a dependent variable against an independent variable. 

Based on this linear regression, one needs to statistically test the assertion that the slope 
of the regression line is unity and that the intercept of the line is zem. Hypothesis testing (see 
Appendix D) can be used for this purpose m t h  the null hypothesis for the slope being I&: slope 
= 1, and the alternate hypothesis is HI: slope # 1. The test statistic is ((slope-1) + standard 
deviation of the slope). This is to be compared to the critical value of the I-distribution at (n - 2) 
degrees of keedom (n is the number of data points) and at the a level of significance, 
t(n - 2,l- 0.5a). If the absolute value of the test statistic exceeds the critical value, the null 



hypothesis is rejected. In a similar manner, the null hypothesis of a zero intercept can be 
examined. Failing to reject both null hypotheses does not mean the model is free of biases, only 
that this analysis fails to identify any bias (Flavelie, 1992). 

A) Perfect Model 

Y = 1.OX 

Measured V h ,  X 

Y = 1.0 X 

Measured Value, X 

Measured Value, X 

Uncertain Data 

Measured Value, X 

Figure C1. Linear regression scenarios when applied to the comparison between model 
predictions and observations (adapted h m  Flavelle, 1992). 

The use of linear regression analysis to evaluate the accuracy of model calculations is not 
inconsistent with some of the other calibration approaches being developed. Most of these other 
approaches use a goodness-of-fit parameter based on some form of the difference between the 
calculated and measured values. Davis and Goodrich (1990) suggested that the deviations of the 
calculated values h m  the observations should be examined for trends to identify model bias. 
The deviations between calculated a d  observed values correspond to the deviation of observed 
versus predicted data points from the 45" line on the linear plot. Trends in the set of deviations 
are what cause the slope of a regression line to vary from unity. Regression analysis has a 
compelling advantage over analysis of the deviations, as it has been shown that the assumption 



that the regression residuals are normally distributed is not unreasonable (Draper and Smith, 
19811, white the deviations between calculated and observed data may not be norrdly 
distributed. Statistical analysis of non-normally distributed data usually requires non-parametric 
statistical tests, which are more complex than parametric tests used for normally distributed data 
(Flavelle, 1992). 



Appendix D: Hypothesis Testing 

Statistical hypothesis testing can be used as a quantitative tool for evaluating predictive 
models. The test usually postulates a null hypothesis (Ho) md a complementTtry hypothesis (HI). 
The null hypothesis postulates the assumption or result that needs to be tested (e.g., the model is 
valid or the Iinear regression line has a slope of unity), while the complernenta~y hypothesis 
postulate the opposite. Two types of errors can occur in hypothesis testing with certain 
probabilities: type I error and type I1 error. The probability of type I error is called model 
builder's risk (a), whereas the probability of type Ll error is called model user's risk 0, and in 
model validation, model user's risk is extremely important and must be kept small (Sargent, 
1990). These probabilities and those for making the right decisions are shown in Table (Dl), 
adapted from Balci and Sargent (1981). Both type I and type I1 errors must be considered in 
using hrpothesis testing for model validation and the risks resulting from these errors can be 
decreased at the expense of increasing the sample sizes of observations. 

Tabie Dl.  Outcomes of hypothesis testing (adapted from Balci and Sargent, 1981). 

Balci and Sargent (1981, 1982) developed a methodology for constructing the 
relationships between model user's risk, model builder's risk, acceptable validity range, sampIe 
sizes and cost of data collection when statistical hypothesis testing is used for validating a 
simulation model of a real, observable system. The acceptable validity range is the amount of 
acceptable accuracy required for the model to be valid under a given set of experimental 
conditions. This range is determined in terms of a validity measure that determines the amount of 
agreement (or lack thereoQ between the model predictions and the actual observable system. 
Balci and Sargent (1981) use an Operating Characteristic C w e  w l l e r  and Freund, 1977) to 
examine the probability of accepting a simulation model as being valid and the interplay between 
validity measure, model builder's risk and model user's risk. This *tion Characteristic 
Curve is shown in Figure D l  for two different values of confidence level, a'. It can be easily 

Result of 
Hypothesis Testing 

Do not reject Ho 

Reject Ho 

seen from the figure that the model builder's risk has the limits a* S a S (1 - P*) and the model 
* 

user's risk has the limits 0 S PI ,B . Decreasing the upper bound of the model user's risk 

Actual Status of the Model 

increases the upper bound of the model builder's risk. One can decrease model user's risk by 

Model is Valid 

Null Hypothesis, Ho, is True 

Correct Decision 

Model Builder's Risk a 

increasing the r a g e  of acceptable validity (increasing A'), increasing the minimum model 
builder's risk a: or increasing the sample size of the observation data. Thus, there is a direct 
relation between model builder's risk, model user's risk, acceptable validity m g e  and sample 

Model is Invalid 

Complementary Hypothesis H1 is 
True 

Model User's Risk j 

Comct Decision 



sizes of observations (equivalent to a cost parameter), and a tradeoff among these parameters can 
be made by the model sponsor, model user (or regulator), and model builder for the intended 
application of the model (Balci and Szgent, 198 1). 

or: 5 M&l Builders Risk S (l-p,*) 
0 < Model Uscrs Risk S pi' 
0 5 Acceptable Validity Ranges h; 

3 

3 
L: 
E 

.f 
3 0 

0 

0 
Validity M a a m  h 

Figure D1.Schematic representation of the Operating Charac tuc  Curves depicting the 
relationships between a*, p', and y' (adapted fiom Sdci and Sargent, 1981). 



Appendix E: Stochastic Validation Approach (Luis and McLaugblin, 1992) 

Luis and McLaughlin (1992) propose and apply a stochastic approach that relies on 
hypothesis testing to validate a two-dimensional, deterministic, unsaturated flow model for 
predicting moisture movement at a field site near tas Cruces, New Mexico. The approach begins 
by identifyrng the factors that contribute to the differences bemeen model predictions and 
observations. A number of assumptions are used in Luis and McLaughlin's (1 992) study and are 
invoked here and adapted for the general case of a saturated flow model and the special case of 
the CNTA flow model. It is assumed that a flow model is used for predicting the distribution of 
hydraulic head in space, which describes the iarge-scale Bow behavior that affects the movement 
and transport of contaminants. Another assumption is that the observations to be made for the 
purpose of model validation are small-scale observations collected at sparse points in space and 
are assumed to be consistent with the steady state assumption of the model. 

Under these assumptions, the differences between predicted and measured head values 
can be attributed to the following three error sources: (1) measurement errors which represent the 
difference between the true values and the small-scale values of hydraulic head; (2) spatial 
heterogeneity, which represents the difference between the large-scale trend (or smoothed head) 
that the model is intended to predict and the true small-scale values of head; and (3) model error, 
which represents the difference between the model prediction and the actual smoothed trend. 
Figure El-A shows schematic representations of these error sources, where an actual, hj, 
fluctuating (due to heterogeneity) head distribution with a large-scale trend, hj, is shown in 

conjunction with a hypothesized stepwise distribution representing model prediction, 

Measurement errors are only dependent on the measurement protocol and accuracy of the device 
used, which are not related in any way to the model. Spatial heterogeneity effect is embedded in 
the difference between the small-scale measurements and the large-scale trend, and this 
difference is not really an enor but a reflection of the difference in scale between the measured 
and predicted quantities (McLaughlin and Luis, 1990). Model error is a reflection of the model's 
ability to predict the large-scale trend, which is the primary quantity of interest in this case, and 
could be due to conceptual deficiencies or erroneous inputs. 

The first step in the analysis will be to decompose residuals into three terms, which 
account for the three error sources identified earlier. 'The jth measurement residual, 9, observed at 
location q (for j= 1, ...N), where N is the total number of head measurements used for validation, 
can be written as 

1 * 
where h, = h (x j )  is the head measurement at % and i j  = I; (Y ,I 7j) is the model prediction at 

the same location obtained by using a set of estimated model parameters, r j .  Note that the hat 
symbol is used to refer to estimated or model-predicted quantities. Equation (El), representing 
the mismatch between observations and model predictions, can be rewritten in terms of three 
components of the error or the mismatch This leads to the equation 



A c b l  head value 

hj 

Figure E l .  Schematic representations of the actual head distribution, largescale trend, and 
stepwise model prediction (A), and the decomposition of the measurement residual 
into three erro~ sources or components (B). 



where the first term between the s q w e  brackets represents measurement error, the second 
bracketed tern represents the effect of geologc heterogeneity, and the last term represents the 
model error. In (E2), hj = h (xj) is the true head value at x, and ndj = h(x j )  is the smoothed value 

of the large-scale trend or the expected value of h,. Again it is assumed here that the 
mathematical expectation of the head represents the large-scale (e.g., at the 50-m-grid scale of 
the CNTA model) values of head that govern the flow pattern and the transport velocities. 
Equation (E2) now defines the separate errors contributing to the differences between 
measurements and predictions. These errors are schematically shown in Figure El-B. 

The second step is to consider the hypothesis that the model prediction is equal to the 
smoothed, large-scale values. This is equivalent to assuming thal the model error term in (E2) is 
zero. In statistical terms the following null hypothesis is considered 

H , : Model error is negligible, h ,  ( r j )  = hi 

H ,  : Model m r  is significant, i j  (4) # h; (E3) 

To apply this hypothesis testing technique to the model validation problem, one must find 
test statistics that can be used to check the hypothesis defined in (E3). These statistics should 
depend on available head measurements and should be designed to minimize the risk associated 
with making erroneous decisions of hypothesis testing (see Appendix D on hypothesis testing 
and associated errors). If one designs a very stringent test, the model user's risk, /3, will be small 
and the model builder's risk, a; will be large (i.e., it will tend incorrectly to reject good models). 
If, on the other hand, the test is lws stringent, it will have a large l a n d  a small a(i.e., it will tend 
incorrectly to accept bad models). 

Luis and McLaughlin (1992) point out that there is no rigorous way to develop an optimal 
test for the spatially distributed hypothesis-testing problem posed above. A number of reasonable 
tests, which can capture the different aspects of model evaluation and its inadequacy, can be used 
instead. Luis and McLaughlin propose a quantitative approach to determine whether stafistics 
such as the sample mean and covariance of the residuals are consistent with hypothesis Ho in 
(E3). When the hypothesis is true, the mean measurement residual is written as 

The second term on the right-hand side is zero by construction. The first term is simply 
the mean measurement error (the measurement bias). If the bias in the measurement device is 
known, then it can replace the first term on the right-hand side of (EA). Otherwise, it is expected 
that the measurement residuals have a zero mean at all sample locations 

To derive the variance of the measurement residuat, Luis and McLaughlin (1 992) assume 
that measurement errors (hi  -hi) are uncorrelated with emrs due to spatial heterogeneity 

( h j  -hi) when the mean measurement residual ( E j )  is zero. The c o v ~ a n c e  between two dif- 

ferent measurement residuals is then written as 



If it is further assumed that measurement errors at different locations are uncorrelated 
with one another and have a common variance, Eq. (E6) can be written as 

P, I j .  k )  = a:. 6j, + P,, ( j ,  k )  (E7) 

where a;. is the measurement error variance, Phh (j, k) is the covariance between the true point 

head measurements hi and hk , and 6,, is the Kronecker delta function (6,, = 1 i f j  = k, 6,, = 0 

otherwise). The desired measurement residual variance can then be written by evaluating the 
zero-lag covariances in Eq. (E7) 

The head  variance,^;, , in (ES) plays a key role in this approach since it defines how 

much variability one should expect around the model's predictions when the model structure and 
measurements are both perfect. In other words, this variance establishes a trpe of lower bound 
on the model's abikity to predict point values of head (Luis and McLaughlin, 192).  If the head 
variance can be derived directly from the flow equation (e.g., using the solution of the statistical 
moment equations as presented by Zhang [1998]), Eq. (E8) can be used to evaluate the 
measurement residual variance to be expected when hypothesis Ho in (E3) is true. Alternatively, 
one can use the numerical results of the flow model and estimate the variance of the head at each 
node of the dimetized domain, and then use Eq. (E8) to evaluate the measurement residual 
variance under the assumption that Ho is correct. 

If the actual residual variance is much larger, it can be presumed that H, is not b e  (i.e., 
model errors are significant). Equations (ES), (E7) and (E8) suggest a few simple test statistics. 
One can test the assumption that the mean residual is zero (Eq. E5) and use the mean s q d  
residual (Eq. E8) to test the null hypothesis Ho in (E3). 

E.l Mean Residual Test 

The measurement residual, E ~ ,  or the mismatch between observations and model 

predictions should have an expected value of zero at every location. If the null hypothesis is true, 
a sample mean computed from many measurement residuals should be close to zero. This 
implies a test of the following form (Luis and McLaughlm, 1992) 

H, : Mean residual is negligible, E;. = 0 

H, : Mean residual is significant, + 0 659) 

The decision role for this test is to decide H, is true if m, < v ,  where v is a test threshold 

selected to give the desired two-sided type I error probability (or significance level, a). It should 
be recognized that Ho in (E9) is equivalent to Ho in (E3). Lf the hypothesis is true and the 
measurements are sufficiently far apart for the residuals to be uncorrelated, m, will have a mean 

of zero and a standard deviation of 1 id%. If we assume that m, is normally distributed (based 



on central limit considerations), the threshold value may be readily obtained from a standard 
normal probability table (Luis and McLaughlin, 1992). Although the type U error is difficult to 
evaluate explicitly, it will decrease as N becomes larger, for a specified significance level (see 
discussion on hypothesis testing). If some of the measurements are too close for spatial 
correlations to be ignored (as will be the case for multiple intervals in individual boreholes), the 
test sample size (Nj may be reduced to account in an approximate way for correlation effects 
(Luis and McLaughlin, 1 992). 

E.2 Mean Squared Residual Test 

If one assumes that measurement residuals conform to a particular probability 
distribution, it would be expected that a certain percentage would lie outside confidence bounds 
derived From this distribution. If, for example, that distribution is normal, the interval 
6, = i, f I.%,: defines a 95% confidence interval around the predicted value i j ,  where 

o,, is obtained from (E8). If a significant number of the measurements hy lie outside this 

interval, the null hypothesis H, is rejected. A more convenient version of the same concept reiies 
on the following meansquared error test (Luis and McLaughlin, 1992) 

1 " E? 
DecideH,istrueif: = - E f  < v 

IV i-1 a,, 

where v is a test threshold selected to give the desired type I m r  probability (or significance 
level). If the hypothesis is true and the measurements are sufhiently far art for the residuals to "P 
be uncorrelated normally distributed random variables, the test statistic x follows a chi-squared 
probability distribution with N degrees of freedom. Similar to the mean test, the type U error can 
be expected to decrease as N becomes larger, for a specified significance level. Also, the number 
of degrees of freedom may be reduced to account for correlation effects when the measurements 
are closely spaced. 

E.3 Analysis of the Spatial Structure of Residuals 

The statistical structure of the differences between model-predicted and observed 
pameters can be examined. If the examination reveals no or little correlation, the m d e l  
structure is d m e d  acceptable, otherwise the model structure involves a systematic error 
(Chapman et aL, 1994). A series of statistical procedures can then be used to test the null 
hypothesis that model error is negltgible. 

If a significant number of the measurements are close enough to one another, it is 
possible to check whether or not the measurement residuals are correlated. Davis and Goodrich 
(1990) and Davis et a!. (1992) propose that a model is invalid if the measurement residuals are 
correlated. Tneir criteria of acceptance are based on the change in the variance of the residuals as 
a function of the spatial lag or separation distance between measurement points. They use a 
simple sernivariograrn of the residuals for the analysis of variance. Using the same notations as 
in the previous section, this semivariogram equation can be written as 



where I is the lag distance or vector, N(I) is the number of data points (pairs) separated by I, and 
q+r is the measurement residual at location xj + I. 

The anatysis using the semivariogram relies on how the plot of ychanges as a function of 
the lag distance. If the plot is a flat horizontal line (some random variations will exist) with zero 
value for y, then this is an indication of an acceptable model with perfect input and observation 
data. If the horizontal line has a value different than zero, it indicates an acceptable model 
structure, but an  error in the model input, which can be adjusted or eliminated by a best-fit model 
prior to computing the residuals. If yincreases as a function of the lag distance, then the model is 
unacceptable, as there are systematic errors in the predictions. In support of this semivariogram 
analysis, Davis el al. (1992) state .".. the semivariogram analysis, while not flawless, has proved 
to be the most robust in terms of finding false models as invalid and true models as not invalid." 

E.4 Discussion of the Stochastic Validation Approach 

The three tests described in sections E.1-E.3 consider different aspects of the validation 
problem. The mean residual test (section E.l) checks for systematic biases (e.g., models that 
consistently predict much higher heads than measured). The mean-squared residual test (Section 
E.2) checks for overall fit (e.g., models that give head gradients and flow directions opposite to 
the m e a s d ) .  The spatiaf structure test (section E.3) checks for more subtle spatial features 
(e.g., capturing, or lack thereof, a converging flow pattern). These tests can be applied to all 
available measurements or to selected subsets. This gives a range of possibilities that complicates 
the task of reaching a conclusion about the results of a model validation. Luis and McLaughiin's 
(1992) view is that it is wise to examine as many performance criteria or test statistics as possible 
to establish an overall picture of model performance. As we mentioned earlier, we agree with 
this view and consider that the diversity of tests used will help evaluate different aspects of the 
model and establish some objective measure of the validity and confidence in the model 
predictions. 

AIthough the approach outlined in this Appendix provides a quantitative measure to 
model vatidation through hypothesis testing, Luis and McLaughlin (1992) caution that this 
approach should not be blindly applied. In their application to the Las Cruces experiment, which 
has an unusually extensive set of soil data and validation measurements collected over horizontal 
and vertical distances of several meters and over time scales of a few yem, they could not reach 
a conclusion regarrllng the ability of the model to predict the observed moisture content at later 
times. In addition, Ababou et a!. (1992) assert that this approach, although very valuable, is not 
quite complete since the hypothesis that the model is false remains untested, and the probability 
of accepting a false model cannot be evaluated by this technique (Chapman et a]., 1994). To do 
this, one would need to postulate another 'complementary' model, or class of models, known to 
be always true if the model being tested is false. To define and implement such complementary 
models in an exhaustive fashion is a difficult task in the case of spatially distributed phenomena 
(Ababou ei a[. , 1992). 

This critique of the approach of Luis and McLaughlin (1992) and of the incompleteness 
of hypothesis testing techniques provides more of a m n  to use as many tests as possible to 



evaluate model performance. As none of these statistical tests is perfect, it is beneficial to 
consider all these tests together and link the calibration results to the results of the vaiidation 
tests for each individual realization as was shown in Figure 3. Although the possibility exists 
theoretically, it is highly unlikely that an individual realization that passes the majority of these 
tests represents a false model. Hone accepts this reaiization as valid based on the results of these 
many tests, one can reasonably assume that the model user's risk, p, is very small. On the other 
hand, if an individual realization fails to pass a large number of these tests, then rejecting this 
realization for being invalid is not expected to represent a large type I error. 



Appendix F: Sequential Self-Calibration (SSC) Approach 

To continue reducing the uncertainty level, a refinement of the conductivity distribution 
can be made using the SSC method. In this method, new head measurements (and old ones) can 
be used to condition the generation of the conductivity field in such a way that the uncertainty in 
the conductivity heterogeneity pattern around each measurement location is reduced. 

Particular interest arises for conditioning on the head and concentration data in the 
numerical analyses due to the fact that these data carry important information on the spatial 
variation and, more importantly, the spatial hydraulic connectivity (flow channels or barriers) 
that may not be captured by traditional hydraulic conductivity data. Several new geostatistically- 
based inverse approaches have been developed to generate the hydraulic conductivity fields by 
conditioning on both the hydraulic head and conductivity measurements (Zirnmerman et ah, 
1998). Among them, the SSC method (Sahuquillo el al., 1992; Wmez-Hemhdez el al., 1997; 
Capilla ef a/. ,  1997, 1998; Wen et al. ,  1996, 1999) is an iterative geostatistically-based inverse 
technique that allows generation of multiple equiprobable reafizations of heterogeneous fields 
that match the dynamic dab, in addition to the typical geostatistical constraints. It has been 
demonstrated to be computationally efficient for modeling hydraulic conductivity field and 
capable of identifying flow channels embedded in the aquifer by conditioning on multiple 
production well data (Wen et aL, 1999). Current SSC method is developed for the analysis of 
reservoir permeability of oil fields conditioning on oil and water flow rates. In the validation 
process, we can use this method in the refinement portion of the iterative loop of modeling- 
validation-refinement. This method, or any other similar one, can be systematically used to help 
the dual purpose of refining the model predictions and reducing their uncertainty bounds. 

The main steps in the SSC method are adapted and summarized here within the 
application to the validation appmach. First, one would start with the original hydraulic 
conductivity fields generated with the original model that is yet to be evaluated and vaiidated. 
Using the flow and transport solutions provided by the original model for each individual 
realization, one would pmess these realizations one at a time utilizing the new (as well as old) 
collected data for validation purposes. An objective function that measures the mismatch 
between predicted and observed head and concentralion data can then be written as (e.g., Wen et 
al., 1999) 

where W,(nw), Wh (nw) are the weights assigned to the concentration and head sampling well 
nw according to sampling accuracy. Matching the head and concentration data is achieved by 
minimizing this objective function. A gradient-based method is used for optimization, which 
requim the calculation of "sensitivity coefficients," the derivatives of the concentration and 
head with respect to the hydraulic conductivity perturbation: 

where N is the number of blocks in the model. In practice, the number of actual blocks within 
which conductivity is perturM can be reduced to between 1/100 and 1/10 of the number of 
blocks of the entire domain using the "master point" concept (Gomez-Hemindez ef aL, 1997). 



The optimal changes of conductivity are determined at these master points and then smoothly 
interpolated by kriging to all grid blocks. The sensitivity coefficients are calculated as part of the 
solutions of the flow and transport equations by book-marking each particle's trajectory and 
travel times. The next step is to determine the optimal perturbations of the conductivity at all 
master locations with a gradient projaction-based method. The optimal conductivity 
perturbations at the master locations are then smoothly propagated to all grid cells by kriging. 
One would then go back and evaluate the objective function until it is sufficiently close to zero, 
or less than a predetermined tolerance value. Fewer than 20 iterations are nonnally required 
(Wen el al., 1999). 

The unique feature of the SSC methd is that it results in multiple equiprobable 
realizations of hydraulic conductivity fields that match observed head and concentration data and 
are consistent with the spatial statistics of the initial conductivity field realizations. This will help 
reduce the uncertainty bound on model predictions (by reducing conductivity distribution 
uncertainty) and guide convergence of the realizations reduction process to a very compact and 
representative set. In addition, fast computation of sensitivity coefficients within one single 
simulation makes inversion feasible. 
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